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ABSTRACT 
The objective of this technical paper is to present a method that characterizes autonomous vehicle (AV) safety 
performance through the application of risk-based validation that leverages existing crash incidence and severity 
data, physics based model and simulation, and U.S. Federal Motor Vehicle Safety Standard (FMVSS) benchmark 
metrics. The output of the proposed risk-based methodology is a framework that organizes the number and type of 
physical tests and model/simulation runs necessary to provide meaningful evidence of AV safety performance 
statistically equivalent to human-driven non-exempt motor vehicles.  

INTRODUCTION 
The lure of AVs promises elimination of vehicle crashes, injuries and fatalities. For consumers, passengers, and 
other road users to embrace AV technology, AVs must perform safely and reliably. A formidable challenge is 
measuring and quantifying the levels of safety offered by AVs. The debate of how safe is safe enough for AVs has 
been structured around a mindset of billions of miles traveled. 

Common sense dictates the starting benchmark is the current level of safety performance; but how best is this 
measured? Traditionally, mechanical and physical safety have been measured in terms of compliance with 
government safety standards. AVs venture beyond this template in that the vehicles are loaded with complex sensor 
technologies and controlled by software. This paper proposes application of a risk-based methodology that leverages 
existing knowledge of vehicle performance characteristics and crash problem data with safety metrics to build a 
framework that compares an overall safety level between nonexempt vehicles and AVs.  

Foundational Concepts 
Defining AV safety metrics that are recognized and accepted industry wide by all stakeholders is an important first 
step. Four foundational concepts are in play: AVs must provide an overall safety level at least equal to the overall 
safety level of nonexempt motor vehicles; the Haddon Matrix, which is the most commonly used paradigm in the 
injury prevention field; all motor vehicles, including AVs, present as a system of systems; and safety is not 
reliability. 

When determining if a vehicle presents an unreasonable risk to safety, probability of failure, consequence of failure, 
occurrence and severity of injury are the primary factors to consider. In a probabilistic risk assessment, there is a 
close relationship between safety and reliability. Yet, safety cannot generally be achieved through component or 
system reliability alone. The Federal Highway Administration (FHWA) version of the Haddon Matrix [3] illustrates 
the relationship between four factors of injury (human, vehicle/equipment, physical environment, and 
socioeconomic) and the phase of injury (pre-crash, crash, and post-crash). 

If we consider the vehicle as a system of systems, one system would be the ‘driver,’ either in human form or in 
digital technology form. Vehicle systems such as powertrain, steering, braking, suspension, tires, fuel, occupant 
protection, and exterior lighting exist on all vehicles, whether AV or human driven. The primary differences 
between AVs and nonexempt vehicles will likely emerge in the driver system, in visibility and glazing systems, and 
interior human-machine interface (HMI) systems. 

A Safety Network can be defined as shown in Equation 1. 	 = + ℎ + +       (Equation 1)  
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Reliability Concepts 
Reliability is considered the absence of failures, and is predicated on how failure is defined. In the context of motor 
vehicle safety, we can describe a failure rate as both the crash rate and a function of system performance. Adopting 
the Advanced Product Quality Planning (APQP) and Control Plan manual definitions for reliability and confidence 
level supports analysis using key risk metrics. Reliability is defined as the probability that an item (i.e., vehicle) will 
continue to function at customer (i.e., roadway user) expectation levels at a measurement point, under specified 
environmental and duty cycle conditions. Confidence level refers to the percentage of all possible samples that can 
be expected to include the true population parameter. Additional reliability concepts include selecting an appropriate 
reliability distribution, sufficient sample size, and consideration of non-critical failures in the reliability analysis. 

Several reliability distributions [7] appear to mirror the crash problem data, such as the binomial distribution, the 
exponential distribution, the Poisson distribution, and the Pareto distribution. Additionally, the bathtub distribution 
holds true for AVs in that sensor and camera initialization increases crash risk at the beginning of vehicle 
deployment. If certain crash avoidance data is collected from AVs, the normal and logistic continuous distributions 
offer the possibility to include the rate of crash events avoided, plotted as negative severity values. For any 
reliability distribution, key parameters (e.g., shape, scale, location) need to be confirmed. The distribution most 
appropriate for AVs may depend on the sample. In this paper, the sample was organized by vehicle classification, 
and the binomial distribution (with the assumption of replacement) was applied to count the number of successes 
(i.e., no crash) in a number of independent trials (i.e., VMT); if a crash occurs, then severity outcome is measured as 
no damage, property damage, injury, or fatality. The number of observations or trials must be sufficiently large. 

Crash Problem 
Utilizing the U.S. Department of Transportation data collections, databases and published statistical analysis, the 
crash problem on U.S. roadways in 2016 [4] was reported as 34,439 fatal police-reported crashes, 2,177,000 injury 
police reported crashes, and 5,065,000 property damage only (PDO) police-reported crashes, 37,461 people killed, 
3,144,000 people injured, and 3,174 billion vehicle miles traveled. Additional crashes occurred that were not 
reported to the police; in 2010, the National Highway Traffic Safety Administration (NHTSA) estimated these 
unreported crashes as a 59.7% increase in PDO and a 39.7% increase in injury crashes [2]. Figure 1 shows a plot of 
the 2010 crash incidence versus severity. Ideally, future safety network analyses would be founded on the combined 
number of police-reported plus unreported crashes. 

 

Figure 1. Crash Incidence versus Severity (2010 data; source: DOT HS 812 013) 

Table 1 lists the police-reported crash incidence rates using 2016 data. Note that the crash per VMT rate for 
passenger cars, light trucks and buses are similar in magnitude as the total average. The police-reported crash 
incidence rate for large trucks is significantly lower, possibly due to these vehicles being operated by trained 
professional drivers.  
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Table 1. 
Crash Incidence by Vehicle Classification (2016 data; sources: DOT HS 812 580 and [10]) 
Vehicle 

Classification 
Police-reported Crashes 
(Fatal + Injury + PDO) 

VMT (millions) 1 crash per (VMT) 

Passenger Car 7,198,839 1,440,228 200,064 
Light Truck 5,010,069 1,409,490 281,331 
Large Truck 502,213 287,895 573,253 
Motorcycle 129,421 20,445 157,973 

Bus 71,227 16,350 229,548 
Other/unknown 21,462 Not reported - 

 Total = 12,933,231 Total = 3,174,408 Total = 245,446 
 

In 2015, NHTSA published findings from a statistical analysis of the National Motor Vehicle Crash Causation 
Survey (NMVCCS) [5], which collected on-scene information about the events and associated factors leading up to 
crashes involving light vehicles. NMVCCS is a weighted sample of 5,470 crashes, which represents an estimated 
2,189,000 crashes nationwide. NHTSA found that the critical reason, which is the last event in the crash causal 
chain, was assigned to the driver in 94 percent (±2.2%) of the crashes. In about 2 percent (±0.7%) of the crashes, 
NHTSA found that the critical reason was assigned to a vehicle component’s failure or degradation, and in 2 percent 
(±1.3%) of crashes, it was attributed to the environment (slick roads, weather, etc.). Among an estimated 2,046,000 
drivers who were assigned critical reasons, NHTSA found recognition errors accounted for about 41 percent 
(±2.1%), decision errors 33 percent (±3.7%), and performance errors 11 percent (±2.7%) of the crashes. 

METHODOLOGY 
A technology-neutral approach to AVs would focus on safety aspects and system safety performance. Shifting the 
mindset to a system of systems construct with an emphasis on test and evaluation supports quantifying safety in 
terms of risk and performance. A test and evaluation strategy would include physical testing, modeling, simulation, 
verification, validation, and accreditation. Stakeholders would use this methodology to generate a sample size of test 
scenarios to which manufacturers would demonstrate the level of safety. Large statistical sample sizes will only be 
achieved through physical testing and modeling/simulation. The benchmark would be comprised of a combination 
of test trials plus simulation runs that vary key performance factors. Reliability theories were developed for aircraft 
components under a metric of flight time hours and are adapted here to VMT. This method describes how to 
statistically estimate the level of AV safety without billions of on-road demonstration miles. There exists 
tremendous opportunity to leverage modeling and simulation along with targeted testing to characterize AV safety 
performance in terms of a reliability distribution. Modeling and simulation supports enhancing the physical test 
scenarios through iterations that vary speed ranges, travel direction, traffic density, etc. 

Key steps in this analysis are:  

• Identify the most relevant set of risk metrics. For example, incidence (number of crashes, severity in terms 
of fatalities, injuries, and property damage), and vehicle miles traveled (VMT). 

• Identify the data needed to support a risk-based analysis. For example, 2,967 billion VMT (2010 data) 
divided by 6,077,362 police-reported crashes (2010 data) results in 1 crash per 488,205 VMT. The average 
of 11,866 VMT per registered vehicle (2010 data) multiplied by an estimated average vehicle age of 10.8 
years (passenger car vehicles, 2010 data) results in an available test time Ttest of 128,153.  

• Adapt the parametric binomial reliability distribution test by replacing the random variable of Time with 
vehicle miles traveled (VMT). 

• Select the % reliability to be demonstrated. For example, ‘85% reliable.’ 

• Select the % confidence level. For example, ‘with 90% confidence.’ 
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• Select the number of test failures that can occur in the sample. For example, ‘1 failure allowed.’ 

• Calculate the sample size based on VMT and Ttest to which AV manufactures would demonstrate the AV 
level of safety.  

• Choose trials (e.g., tests and model/simulation runs) that characterize vehicle performance in steering, 
accelerating, braking, sensor recognition, causes of vehicle control loss, visibility, etc. 

In this analysis, the independent test trials correspond to VMT, regardless of vehicle maneuver, speed, etc. An 
example of the typical resulting output is in the form: a sample size of 11 pedestrian detection system test trials with 
0 failures occurring will demonstrate a reliability of 80% at the 90% confidence level. In other words, if the item 
reliability is < 80%, the chances of passing this test are < 10%. 

Test Sample Size 
Table 2 is a representative test sample size matrix which was populated by exercising a parametric binomial 
reliability demonstration test calculator [8] with mission time equal to 1 crash per 488,205 VMT (based on 2010 
data) and the available test time equal to 128,153 hours (based on 2010 data). Setting the reliability and confidence 
levels is a subjective decision. If the current level of safety for nonexempt passenger cars and light trucks is 
estimated at 85% reliability with 95% confidence, then a test series for equivalent AV safety performance would 
require a sample size of 425 tests that allows one failure. An alternate approach is to conduct testing until one failure 
occurs, and then estimate the reliability and confidence level. 

Table 2. 
Example of a Test Sample Size Calculated using the Parametric Binomial Reliability Distribution  

Passenger Cars 
& Light Trucks 

Confidence with 1 Failure Allowed 

Reliability 80% 85% 90% 95% 98% 99% 
99% 4,325 4,871 5,618 6,851 8,425 9,587 
98% 2,152 2,423 2,795 3,409 4,192 4,770 
95% 848 955 1,101 1,343 1,652 1,879 
90% 413 465 537 654 804 915 
85% 268 302 348 425 522 594 
80% 196 220 254 309 380 433 

 

Once the test sample size is determined, the test and evaluation strategy can be developed that describes the test 
scenarios and corresponding specific number of physical tests. Initially, test scenarios can be derived as a mix of 
existing FMVSS tests and AV sensor suite edge or challenging cases. Examination of sensor algorithms would assist 
in prioritizing tests and test scenarios that score high in risk assessment parameters probability of failure and 
consequence of failure. For example, low sun angle is a challenge for camera technologies. Therefore, of the 425 
tests, a proportion representative of the risk would be allocated to low sun angle conditions for which the camera 
technology significantly contributes to vehicle control. Finally, the test and evaluation strategy can be tailored to a 
specific geographical region, such as state, city, county, geofenced area, or national level.  

Building the Safety Framework 
Consider building the safety framework by vehicle classification. The U.S. follows a self-certification system of 
compliance, in which vehicle and equipment manufacturers certify that their products meet applicable standards. 
Additionally, the manufacturer determines the vehicle classification – e.g., passenger car, large truck, bus, etc. 
Historically, stakeholders have considered self-certification to be demonstrated through physical test. AVs will 
likely propel stakeholders toward a new era of targeted physical testing supplemented with extensive modeling and 
simulation to demonstrate safety. 

The values shown in Table 3 represent an example of a safety framework for nonexempt passenger cars and light 
trucks. The crash risk is derived from reference [9]. The reliability distributions were selected to reflect the network 
element risk. For example, U.S. DOT data shows high motor vehicle reliability with high confidence as 
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demonstrated through the low number of crashes caused by vehicle failure, likely buttressed by NHTSA recall 
authority. The environment – e.g., roadway surface, markings, traffic communications (signage, lighting), etc. - has 
high reliability with high confidence, however, atmospheric conditions may contribute uncertainty and adversely 
impact reliability and confidence. Estimating the current level of safety for human drivers of nonexempt vehicles to 
be 85% reliability with 90% confidence reflects the NVMCCS analysis attributing 94% of passenger car and light 
truck crashes due to driver error. The unknown/uncertainty element gives stakeholders flexibility to examine 
competencies and scenarios of interest; for this paper, the reliability distribution of 80% / 85% was assigned as a 
minimum value. 

Table 3. 
Example of a Safety Framework for Passenger Cars & Light Trucks 

Network 
Element 

Crash 
Risk 

[Ref. #] 

FMVSS Reliability 
Distribution 

Number of Tests: Parameter(s) 

Environment 2% 301, 302, 303, 304, 305 90% / 95% 109 tests: rain, ice, snow 
Vehicle 2% All Standards 95% / 95% 220 tests: brakes, steering, 

occupant protection, etc. 
Driver 94% Recognition: 101, 103, 104, 108, 

111, 113, 123, 125, 131, 138, 205 
 

Decision: 102, 108, 124, 135, 
209, 210, 213, 225, 401 

 
Performance: 105, 106, 109, 110, 

116, 117, 118 
 

Non-Performance: 114 
 

Other: 

85% / 90% 17 tests: low sun angle 
 
 

28 tests: speed, curves, 
intersections 

 
7 tests: lane management, LTAP 

 
 

3 tests: maneuvers near a “taco 
truck” with pedestrians 

4 tests:   see NMVCCS data 
Unknown/ 

Uncertainty 
2% Varies 80% / 85% 37 tests: double parked, orange 

cone, etc. 
    Total = 425 tests 

 

Overall safety by vehicle class allows for differentiation in safety levels. A safety framework for large trucks would 
vary from Table 3 in the crash risk and reliability distributions, requiring additional data analysis. It is likely that 
trained professional drivers would be associated with a lower crash risk and a higher reliability distribution for the 
Driver element, and a safety level higher than passenger cars.  

Table 3 shows data parsed into the NMVCCS categories which aligns better with the construct of “level of safety” 
for AVs because it treats the common vehicle systems (e.g., powertrain, steering, braking, etc.) separate from the 
Driver, and also allows for refinement of the driver behaviors (e.g., recognition, decision, performance, non-
performance, and other). However, the NMVCCS sample is only light vehicles and this distribution cannot be 
projected directly onto NHTSA GES or CDS estimates for other vehicle classifications. An alternate option could be 
to parse the test sample by pre-crash scenario (Rear End, Crossing Paths, Road Departure, Pedestrian, Cyclist, etc.) 
which is a good fit for tracking how crashes occur and factoring system effectiveness. 

Successful implementation depends on reaching consensus on the metrics, collecting and sharing relevant AV 
characterization data, and revisiting at regularly defined intervals. 

CONCLUSIONS 
All aspects of AV safety and reliability must be demonstrated before candidate AVs are deployed onto public 
roadways. This proposed methodology establishes a framework to quantify safety performance levels and includes 
the flexibility to incorporate new data describing driver performance or technological capabilities as AV technology 
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evolves. To paraphrase Aristotle, the whole framework is greater than the sum of its parts. Blending established 
engineering concepts from motor vehicle safety, reliability, and systems engineering to form a new approach to 
specify benchmark test & evaluation scenarios places a reasonable burden on all stakeholders and is achievable well 
before driving billions of miles. 

Table 4 lists one measure of vehicle incidence rates for different types of vehicles. Mindful that VMT and flight 
hours are not comparable metrics, the promise of AVs may be realized if it follows the trend of automated aviation 
safety. 

Table 4. 
Compilation of Vehicle Incidence Data 

Vehicle Incidence Data 
Police-reported Motor Vehicles Crashes 0.0205 crashes/ 10,000 VMT                       [Ref. 2] 
Estimate for All Motor Vehicles Crashes 0.0457 crashes / 10,000 VMT                      [Ref. 2] 

CA DMV AV Disengagements 38.6 disengagements / 10,000 AV VMT           [2017 data] 
Automated Aviation 0.5 accidents / 1 million take-offs                [Ref. 6] 
Commercial Aviation 0.149 accidents / 10,000 flight hours           [Ref. 6] 

General Aviation 7.11 accidents / 10,000 flight hours             [Ref. 6] 
Customs & Border Patrol Aviation 52.7 accidents / 10,000 flight hours             [Ref. 6] 
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ABSTRACT 

 

Lane Keeping Support (LKS) is an advanced driver assistance system (ADAS) technology intended to prevent 

a vehicle from drifting out of its travel lane.  To assess the potential for LKS to reduce real-world crashes 

where the driver drifts out of their travel lane, test track performance was compared with the real-world crash 

data.   

 

Five light vehicles equipped with LKS were evaluated on the test track using Lane Keeping Assist (LKA) test 

methods contained within the Euro NCAP Test Protocol - Lane Support Systems.  Specifically, the procedures 

to evaluate a vehicle’s response to an imminent departure over a solid white line were used; tests to evaluate 

LKS system response to an unmarked road edge were not performed.  These tests identified performance 

differences between the vehicles, and were somewhat dependent on the lateral velocity used during test 

conduct. 

 

Results from these tests were compared to relevant fatal crashes in the National Motor Vehicle Crash 

Causation Survey (NMVCCS) survey conducted by the National Highway Traffic Safety Administration from 

2005-2007, and the agency’s new Crash Investigation Sampling System (CISS).  A review of the fatal 2005 – 

2007 NMVCCS and 2017 CISS lane/roadway departure cases was performed to classify the shoulder type 

present on the side of the roadway from which the subject vehicle first departed from, and to estimate the 

shoulder width just after the departure, where applicable.  The objective of this effort was to estimate whether 

LKS interventions could have potentially amended the real-world pre-crash path of the subject vehicle in the 

vicinity of the lane departure, given the system performance observed on the test track. 

 

When the test track performance of the vehicles was considered in the context of the road shoulder widths and 

road/lane/shoulder characteristics present in the 43 fatal NMVCCS and 50 CISS crashes analyzed for this paper, 

estimating whether LKS could have affected the crash outcome was found to depend on a number of factors.  From 

an input perspective, the lateral velocity of the vehicle as it is directed toward the boundary of the lane, and whether 

that boundary is comprised of a clearly defined painted line or simply a pavement edge, has the potential to affect 

whether an LKS intervention can even be expected. 

 

Even if the input conditions are such that a vehicle’s LKS activation criteria are satisfied, then the ability of the 

system to effectively address the pre-crash scenario is relevant, yet can depend on a number of factors.  The amount 

of lateral deviation before or beyond the lane line and/or road edge, and the implications of it being too large, are 

important considerations.  In the case of a right-side departure away from the travel lane, excessive lateral deviation 

may result in at least part of the vehicle leaving the paved roadway.  Similarly, left-side departures with excessive 

lateral deviation have the potential to increase the risk of a head-on crash. 
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INTRODUCTION 

 

Lane Departure Warning (LDW), Lane Keeping Support (LKS), and Lane Centering Control (LCC) are three 

advanced driver assistance system (ADAS) technologies intended to prevent vehicles from drifting out of their 

travel lane.  All three systems utilize a camera-based vision system to monitor the vehicle’s lateral position 

with respect to the roadway.  Depending on the system design and system’s level of intervention authority, the 

technology is intended to warn the driver that they are leaving the travel lane, redirect the lateral path of the 

vehicle to stay in the lane, or continuously maintain the lateral position of the vehicle within the lane of travel .    

 

The run-out-of-lane pre-crash scenarios identified by Swanson, et al were used to estimate the target crash 

population of the ADAS systems discussed in this paper [Swanson, 2018].  In this work, a combination of the 

National Automotive Sampling System (NASS) General Estimates System (GES) and Fatality Analysis 

Reporting System (FARS) 2011-2015 crash databases were used to examine all police-reported crashes 

involving a light vehicle in the critical event of the crash or in the event that occurred which made the crash 

imminent.   Light vehicles include all passenger cars, vans, minivans, sport utility vehicles, or light pickup 

trucks with gross vehicle weight ratings less than or equal to 10,000 pounds.  Common crash types were 

analyzed to produce a list of representative pre-crash scenarios based upon NHTSA pre-crash variables (i.e., the 

pre-crash movement or the vehicle’s action prior to an impending critical event or prior to impact if the driver did 

not make any action).  From the pre-crash scenarios identified in the report, Table 1 lists those relevant to the 

inadvertent run-out-of-lane crash problem.  This approach identified, on average, over 760,000 run-out-of-lane 

crashes annually; over 9,600 of which were fatal. 

 

Table 1. 

2011 – 2015 FARS and GES run-out-of-lane light vehicle target population 

 

 
 

To assess the potential effectiveness of countermeasures intended to prevent run-out-of-lane crashes, Wiacek, et al 

performed a study to better understand why drivers depart the roadway and under what conditions and 

circumstances the crashes occur [Wiacek, 2017].  Using fatal crashes from the National Motor Vehicle Crash 

Causation Survey (NMVCCS), this study identified 72 cases where the result of a subject vehicle departing the 

travel lane resulted in a crash where an occupant in an involved vehicle sustained fatal injuries.   Of these, 43 

cases where the subject vehicle drifted out of the lane and crashed were used to assess the real-world 

applicability of LDW/LKS/LCC crash avoidance technologies.   

 

The study concluded that a robust LKS/LCC system with sufficiently high lateral control authority could have 

effectively prevented many of the 43 cases reviewed.  In other words, unless there were other factors present 

which prevented the driver from reengaging in the driving task, a robust LKS/LCC system would likely have 

prevented the driver from running out of the lane, which started the chain of events that led to the fatal 

crashes. The study suggested that LKS/LCC systems appear to have more potential in crash reduction than 

LDW since the systems do not rely on alert modality effectiveness or driver responsiveness.  Additionally, the 

mentioned the environmental and roadway conditions at the time of the crash would likely not have 

compromised the performance of the vision system to detect the roadway boundary at the moment the vehicle 

left the lane. 

 

This paper builds upon the earlier work by comparing measured test track performance of vehicles equipped 

with LKS systems with the real-world crash data.  The purpose was to measure the performance of the LKS 

systems under controlled conditions and estimate how the systems may have addressed the driving conditions 

preceding known crashes.  The goal in doing this is to assess the efficacy. 

 

Scenario Avg FARS Avg GES

Road edge departure/No Maneuver 6,284         472,182     

Opposite Direction/No Maneuver 2,983         96,095       

Drifting/Same Direction 196            120,223     

Object/No Maneuver 151            80,088       

Total 9,615         768,588     
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Five light vehicles from different manufacturers were tested using Lane Keep Assist (LKA) test methods 

contained within the European New Car Assessment Programmed (Euro NCAP) Test Protocol - Lane Support 

Systems [Euro NCAP, 2015] to assess technology implementation differences.  Euro NCAP uses LKA to 

describe systems NHTSA would describe as having LKS.  For the sake of this paper, the terms can be used 

interchangeably.  The following vehicles were tested: 

• 2017 Cadillac CTS 

• 2017 Ford Fusion 

• 2017 Mercedes Benz C300 

• 2017 Toyota Prius Prime 

• 2017 Volvo XC90 

 

For each vehicle, the test track performance was used to assess if the vehicles’ LKS systems intervened, whether the 

interventions corrected the vehicle’s heading back to the travel lane, and the maximum lateral deviation from the 

test lane line marking. 

 

In addition to the vehicle tests, the crash data were also surveyed to assess how the technology would apply to the 

real-world.   First, the 43 fatal NMVCCS cases from the previous study were reanalyzed.  For each crash, on the 

side of the lane or roadway departure, the shoulder width of the road was estimated.  To be consistent with the Euro 

NCAP LKA test procedure, the shoulder width measurement was estimated from the inside edge of the lane 

marking to the edge of the road surface.  In those crashes where the shoulder width was not relevant because of the 

crash type or roadway surface, the side of the roadway or lane of travel was characterized. 

 

Lastly, using the same methodology, a review of the run out of the lane fatal data was also analyzed using the 2017 

NHTSA Crash Investigation Sampling System (CISS).  CISS, which began pilot data collection is 2016, replaced 

the retired National Automotive Sampling System Crashworthiness Data System (NASS-CDS) as NHTSA’s 

nationally-representative investigation-based data collection program.  For these 50 cases, the shoulder width was 

measured or the side of the lane/roadway departure or was characterized.  The results of this analysis will be 

presented and discussed in the context of the five vehicles tested. 

 

VEHICLE TESTING 

 

Test Procedure 

The Euro NCAP LKA test procedure uses a series of trials performed with iteratively increasing lateral 

velocities towards the desired lane line. For all tests, a robotic steering controller was utilized to increase the 

repeatability of the procedure and reduce variability associated with manual steering inputs.  Although the 

Euro NCAP LKA test protocol does not specify use of robotic steering controller, it does require tight path 

tolerances be satisfied by the vehicle as it approaches the desired lane marking during testing.  

 

Pretest conditions  

For each subject vehicle (SV), prior to testing, the vehicle manufacturers were asked to complete pre-test 

forms that included information to determine if any system initiation testing must take place prior to 

conducting the performance testing.  If system initialization testing was needed, the vehicle manufacturer 

provided the recommended instruction to initialize the system.   

 

Once the system was initialized, the SV’s tires and brakes were pre-conditioned using a series of start and 

stops at predefined speeds and brake decelerations. 

 

Test Maneuver  

Each LKS trial began with the SV being driven at 72 km/h down a straight lane delineated by solid white and 

dashed white lines.  The SV path was initially parallel to the lane lines, with an offset from the solid white line 

that depended on what lateral velocity would be used later in the maneuver  (Figure 1).   

 

After a short period of steady state driving, the steering machine was used to adjust the heading of the SV 

towards the solid white lane line using a path defined by a 1200 m radius curve.  The amount of time the SV 

path remained on this curve depended on the lateral velocity desired for the test trial, and the heading angle 
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associated with it.  Once these parameters had been achieved, the steering machine returned the handwheel 

angle to zero, and was decoupled from the SV so as to allow the SV handwheel to move freely and 

independently. 

 

 
Figure 1. Left lane departure for LKS test 

 

The lateral velocity of the SV approach towards the solid lane line (from both the left and right directions) was 

iteratively increased from 0.1 m/s.  If acceptable LKS performance was realized, the lateral velocity used for 

the next trial was increased by 0.1 m/s.  This continued until the SV was no longer able to satisfy the LKS 

performance criteria or until a maximum lateral velocity of 1.0 m/s was reached.  The tests performed with 

lateral velocities from 0.1 - 0.5 m/s were used for the Euro NCAP performance assessment protocol, whereas 

those >0.5 m/s were used for research purposes. [Euro NCAP, 2015] 

 

LKS Validity Criteria  

The following validity criteria were applied to each test trial to insure the tests were properly performed:  

• SV Speed: 72 km/h ± 1.0 km/h 

• Lateral deviation from test path: ± 0.05 m 

• Lane departure lateral velocity: ± 0.05 m/s from target lateral velocity  

• Steering wheel velocity: ±15 deg/sec 

 

LKS Performance Criteria  

Acceptable LKS performance occurred when SV did not cross the inboard leading edge of the solid lane line 

by more than 0.4 m.  

 

Results 

The results from the five vehicles tested under the conditions described above will be presented.  A summary 

of the data by vehicle and test condition is presented in Table 2.  Per the test condition, the maximum lateral 

deviation is noted.  Positive values indicate the maximum lateral deviation occurred prior to the vehicle 

crossing the inboard edge of the lane line.  A negative value indicates the maximum lateral deviation occurred 

after the vehicle crossed the inboard line edge.  No LKS intervention (No LKS) is noted on the summary table, 

as well as if a vehicle was not tested under a given condition (NDT). 

 

Tests Performed with Lateral Velocities from 0.1 – 0.5 m/s 

Of the five vehicles tested, only the Cadillac CTS and the Volvo XC90 satisfied the performance criteria for 

the first five lateral velocity iterations during both the left- and right-side lane line approaches.  In the case of 

the Volvo XC90, the maximum lateral deviation occurred prior to the vehicle crossing the lane line, as 

indicated by the positive values in Table 2.   

 

The Mercedes C300 satisfied the performance criteria during tests conducted with lateral velocities up to 0.3 

m/s during left- and right-side approaches.   

 

The Ford Fusion and Toyota Prius had asymmetrical performance where, under certain test conditions, the 

vehicles satisfied the performance criteria on one side but not the other for the same lateral velocity.   

 

The Ford Fusion did not satisfy the performance criteria on the left-side approaches when lateral velocities of 

0.1 and 0.4 m/s were used, but did for each right-side approach.  For this vehicle, LKS did not activate during 
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trials performed with a lateral velocity of 0.1 m/s (three repeated trials were performed, each with the same 

outcome) and while LKS did activate during the test performed with a 0.4 m/s lateral velocity, maximum 

lateral displacement exceeded 0.4 m. 

 

The Toyota Prius satisfied the performance criteria at 0.2 m/s and 0.3 m/s on the right side, but exceeded the 

maximum lane deviation limit of 0.4 m on the left side.  

 

Tests Performed with Lateral Velocities from ≥0.6 m/s 

LKS interventions were observed during tests performed with lateral velocities of 0.6 to 0.9 m/s for three of 

the five vehicles tested in this paper. The Volvo XC90 satisfied the LKS performance criteria during left- and 

right-side approaches for lateral velocities up to 0.7 m/s, and only on the left side at 0.8 m/s.  No further 

testing was conducted with the Volvo XC90.   

 

The Cadillac CTS satisfied the LKS performance criteria during left- and right-side approaches performed 

with a lateral velocity of 0.6 m/s.  Although LKS interventions were observed during left- and right-side 

approaches using lateral velocities up to 0.9 m/s, the vehicle exceeded the maximum lateral deviation 

threshold.  

 

The LKS system on the Ford Fusion intervened when tested at the lateral velocity of 0.5 m/s, but the vehicle 

exceeded the maximum lateral deviation threshold on both the left- and right-side approaches.  No further 

testing was conducted at higher lateral velocities.   

 

For the Toyota Prius, testing at higher lateral velocities was only conducted on the right side because the 

performance criteria was not satisfied at lower lateral velocities during left-side approaches.  The vehicle 

satisfied the maximum lateral deviation at 0.6 m/s, exceeded the criteria at higher lateral velocities on the left-

side approach tests. 

 

The Mercedes C300 was only tested on the right side at the lateral velocity of 0.5 m/s.  The LKS did not 

engage during this trial, and no further testing was conducted.  No vehicles were tested with lateral velocities 

at or above 1.0 m/s. 

 

Figures 2 and 3 illustrate the performance differences among the five test vehicles during tests performed with 

the various lateral velocities.   Lateral deviations greater than those specified by the LKS performance criteria 

are shaded in blue. 

 

 
Figure 2. LKS test results – right side departure 
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Figure 3. LKS test results – left side departure 

 

Table 2. 

Summary of test results by vehicle and test conditions 

 
 

Figures 4 and 5 are screen shots from test video recorded during right-side approaches performed with a lateral 

velocity of 0.7 m/s, for the Volvo XC90 and the Cadillac CTS, respectively.  LKS intervened during both 

trials.  The maximum lateral deviation recorded for the Volvo XC90 was 0.07 m from the inboard edge of the 

lane marking (able to satisfy the LKS performance criteria), whereas it was 1.68 m for the  Cadillac CTS 

(unable to able to satisfy the LKS performance criteria).   The white arrows shown in Figures 4 and 5 indicate 

the reference lane marking. 
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Figure 4. Point of maximum lateral deviation observed during a right-side approach test performed with the 

Volvo XC90 and a 0.7 m/s lateral velocity 

 

 

 
Figure 5. Point of maximum lateral deviation observed during a right-side approach test performed with the 

Cadillac CTS LKS and a 0.7 m/s lateral velocity 

 

REAL-WORLD SHOULDER WIDTH ANALYSIS 

 

A review of the fatal 2005 – 2007 NMVCCS and 2017 CISS lane/roadway departure cases was performed to 

classify the shoulder type present on the side of the roadway the subject vehicle first departed its travel lane, 

and to estimate the shoulder width just after the departure, where applicable.  The objective of this effort was 

to estimate whether LKS interventions could have potentially amended the real-world pre-crash path of the 

subject vehicle near the lane departure, given the system performance observed on the test track. 
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NMVCCS Lane Width Analysis 

Method To establish a baseline, the 43 previously analyzed fatal NMVCCS cases were reassessed.  For these 

cases, it was previously established that the subject vehicle drifted out of the lane, resulted in a fatal crash, and 

was relevant to assessing the real-world applicability of LDW/LKS/LCC crash avoidance technologies.  All 

the cases were reviewed and the side of the initial lane or roadway departure was identified.  Once identified, 

the shoulder width distance was estimated for the side of the roadway departure.  Examples will be discussed 

below followed by the results of the analysis.  

 

To be consistent with the measurement convention used in the Euro NCAP LKA test procedure, and with the 

data reported in Table 2, the shoulder width estimates extracted from the NMVCCS and CISS cases were 

referenced from the inside edge of the lane marker to the end of the road surface at the location of the lane 

departure. 

 

The side of the roadway was also characterized in those cases where a lane marking or shoulder was not 

present, such as when the vehicle traveled into an adjacent lane, rural or local roads where there were no 

markings and only a road edge and, intersections or when a curb was present that define the edge of the 

useable road surface.  

 

Examples In NMVCCS Case Nos. 2006-045-063 and 2007-78-071 the drivers drifted out of the lane on the left 

side.  For these types of cases the road shoulder width measurement was estimated from the inside edge of the lane 

marker to the end of the road surface.  This was conducted by examining the scene diagram and the scene photos, 

using the lane line width as the reference for the measurement. (Figures 6 and 7) 

 

 
Figure 6. NMVCCS Case No. 2006-045-063 shoulder width 
 

 
Figure 7. NMVCCS Case No. 2007-078-071 shoulder width 
 

NMVCCS Case No. 2005-76-035 is an example where the subject vehicle departed the lane of travel into the 

“adjacent lane.”  In this case the driver drifted over the center line and departed the road on the left resulting in a 

rollover (Figure 8). 
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Figure 8. NMVCCS Case No. 2005-76-035 adjacent lane on the left 

 

NMVCCS Case No.  2005-11-61 is an example of crash where the vehicle was traveling a straight, level, two-way, 

rural gravel roadway with no painted lines (Figure 9). The subject vehicle drifted and exited the roadway to the 

right.   This type of roadway was characterized by its “road edge.”  

 
Figure 9. NMVCCS Case No.  2005-11-61 road edge example 

 
NMVCCS Case No. 2007-49-043 is an example of a roadway where there was no lane marking and just a curb at 

the end of the road surface on the side the vehicle departed the travel lane.  In this case the subject vehicle was 

traveling east in left lane.  After traveling through an intersection, the subject vehicle drove off the road to the left 

onto the curbed median striking a light pole (Figure 10).  This crash also has some characteristics similar to the 

intersection crashes that were identified in the CISS data, and will be discussed later in this paper.  

 

 
Figure 10. NMVCCS Case No. 2007-49-043 curb example 

 

Results Using the method described above, the results of the analysis of the 43 NMVCCS cases are provided in 

Figure 11.  For this analysis, the shoulder width measurement data was grouped by 0.1 m increments up to 0.4 m. 
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The data show that in 16 of the 25 crashes where a shoulder was present on the side of the road, and the vehicle 

departed the lane, the shoulder was greater than 0.4 m.  In nine of the crashes, the shoulder width was equally 

distributed between the “greater than 0.1 m” and “equal to 0.4 m or less” groupings.  There were no crashes where 

the shoulder was 0.1 m or less. 

 

In this data set, there were three crashes where the subject vehicles left the road with no lane markings on the side of 

the roadway departure.  It should be noted that in these cases, there was a clearly-defined road edge.  Lastly, in 14 

cases the vehicle drifted into the adjacent lane.  These crashes resulted in the vehicle leaving the roadway after 

crossing into the oncoming lane or drifting into oncoming traffic 

 

 
Figure 11. 2005 – 2007 NMVCCS roadway shoulder distance or characterization 

 

CISS Lane Width Analysis 

Method A second analysis of the real-world crash data was conducted using NHTSA’s CISS.  In response to a 

congressional directive to modernize its nationally representative crash databases, NHTSA concluded that the 

NASS-Crashworthiness Data System (NASS-CDS) program would be retired and replaced with the CISS.  The 

new CISS program was designed to provide many improvements from its predecessor including, obtaining 

more accurate scene and vehicle measurements. [Mynatt, 2017]  In addition to the improved measurement, the 

2017 CISS dataset was the first year collected for the program.  Given the NMVCCS data was older, the newer 

data could provide insight into changes to the roadways with respect to the efficacy of LKS. 

 

As with the NMVCC study, all fatal cases from the 2017 CISS dataset that met the following Crash Type Code 

were selected:  01, 02, 04, 05, 06, 07, 09, 10, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 64, 65, 66, and 67 (a chart 

explaining the crash types is provided in the Appendix of this paper).  As with the NMVCCS case selection, the 

intent was to capture fatal crashes resulting from the vehicle leaving the original travel lane.   The CISS cases are 

also provided in the Appendix. 

 

Fifty-seven cases met the criteria, however, upon review of the data,  seven cases were excluded from the final 

analysis because the subject vehicles were traveling the wrong way on a one-way street or the vehicle lost 

control prior to departing the roadway.  There were 50 cases in the final data set.   

 

In CISS, all the crash scene measurements are now collected in three-dimensions using a Nikon Total Station 

electronic measuring devices, coupled with FARO® Blitz software. [Mynatt, 2017]  As discussed in the 

NMVCC section, the cases were reviewed, and the side of the initial lane or roadway departure was identified.  

The NMVCCS shoulder width measurements were estimated using the scene diagrams and photos.  In CISS, 

the shoulder widths were measured in the Blitz diagramming software near  the roadway departure location.  It 

should be noted that beginning in 2018, shoulder width measurements in CISS are coded in the data file .   As 

with the NMVCCS cases, the side of the roadway departure was also characterized when applicable.   

Examples of the roadways will be provided below followed by a summary of the results. 
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Examples CISS Case No. 1-13-2017-127-01, the subject vehicle initially departed its lane of travel on the 

right side prior to returning and departing the lane on the left side, resulting in a crash with a vehicle traveling 

in the adjacent lane.  (Figure 12).  In this case, the lane departure occurred on a highway whose shoulder width 

was measured from the inboard edge of lane line to the end of the road surface on the far right.   

 

 
Figure 12. CISS Case No. 1-13-2017-127-01 shoulder width example 

 

CISS Case No. 1-19-2017-113-01 is an example of a vehicle leaving the lane of travel into the adjacent lane.  

In this case the subject vehicle was traveling east on the highway, departing the lane on the left.  The vehicle 

departed the roadway on the left where it struck a concrete driveway, and rolled over before coming to rest on 

its side (Figure 13). 

 

 
Figure 13. CISS Case No. 1-19-2017-113-01 adjacent lane 

 

CISS Case No. 1-32-2017-013-01 was categorized as a vehicle parked on shoulder.  In this case the subject 

vehicle was traveling on a major highway.  The vehicle departed the roadway to the right, entering the road 

shoulder. The front of subject vehicle impacted the rear of a parked vehicle on the shoulder (Figure 14). 

 

 
Figure 14. CISS Case No. 1-32-2017-013-01 parked vehicle 
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CISS Case No. 1-33-2017-025-01 is an example of a crash that occurred at an intersection.  In this case, the 

subject vehicle drifted out of the travel lane into the adjacent lane.  This occurred  at an intersection where 

there were no lane markings.  The vehicle proceeded to travel until it impacted a vehicle traveling in the 

opposite direction.  Figure 15 shows the approach for the subject vehicle and the lack of lane markings at the 

intersection on the left side. 

 

 
Figure 15. CISS Case No. 1-33-2017-025-01 intersection example 

 

CISS Case No. 1-28-2017-046-01 is an example where there were no lane markings on a gravel road but a 

discernable road edge.  In this case, the subject vehicle was negotiating a right curve.  The vehicle departed the 

roadway to the left side and impacted a tree on the left side of the vehicle  (Figure 16).   

 

 
Figure 16. CISS Case No. 1-28-2017-046-01 road edge example 

 

Results The results of the shoulder width measurements and roadway departure characterization for the 50 

CISS cases are presented in Figure 17.  As with the NMVCCS analysis, the shoulder width measurement data 

were grouped by 0.1 m increments up to 0.4 m. 

 

The data show that in 16 of the 19 crashes where a shoulder was present on the side of the road, and the 

vehicle departed the lane, the shoulder width was greater than 0.4 m.  In three of the crashes, the shoulder was 

greater than 0.1 m wide but equal to 0.3 m or less. There were no crashes where the shoulder was 0.1 m or less. 

 

In this data set, there were seven crashes where the subject vehicle left the road with no lane markings on the 

side of the roadway departure.  It should be noted that in these cases, there was a clearly defined road edge.  

There were four cases where the vehicle drifted out of the lane at an intersection where the lane markings were 

not present.  In 18 cases, the vehicle drifted into the adjacent lane.  As with the NMVCCS cases, generally 

these crashes resulted in the vehicle leaving the roadway after crossing into the oncoming lane or drifting into 

oncoming traffic.  Lastly, there were two cases (CISS Case Nos. 1-32-2017-013-01 and 1-28-2017-039-01) 

where the subject vehicles impacted a vehicle parked on the shoulder. 
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Figure 17.  2017 CISS roadway shoulder distance or characterization 

 

DISCUSSION 

 

This section will discuss the results of five vehicles tested with the Euro NCAP LKA procedure (i.e., those 

described earlier in this paper) in the context of the analysis of the real-world fatal crashes.  Specifically, 

given the performance of the vehicles under the test conditions, discussion will be focused on whether the fatal 

crashes could have been potentially prevented for those cases where there was a shoulder, road edge, and 

adjacent lane.  

 

With respect to the roadway shoulder width, NMVCCS and CISS results (which encompassed 93 fatal crashes 

that were collected approximately 10 years a part) were consistent and showed similar distributions.  For that 

reason, the combined results are presented in Figure 18.   

 

These real-world data were not assessed for the dynamic state of the vehicle and the lateral velocity of vehicle 

prior to the roadway departure.   Any attempt to correlate that lateral velocity was beyond the scope of the 

study.  It is also assumed that the travel speed of the subject vehicles met or exceeded the minimum activation 

speed for the LKS.  The cases were identified by the vehicle appearing to drift out of the lane, and quantifying 

the shoulder width when applicable or characterization of the side of the roadway departure.   

 

 
Figure 18.  Combined CISS and NMVCCS roadway shoulder distance or characterization.  
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Lane Departure with Shoulder 

CISS Case No. 1-19-2017-041-01, is an example of a roadway with a narrow shoulder that only an LKS that 

allows very limited lateral deviation from the travel lane would be expected to prevent  at least part of the 

subject vehicle from departing the roadway.  The subject vehicle in this example was traveling west and 

departed the roadway to the right.  The vehicle, traveled down an embankment, across an adjacent roadway 

prior to impacting a tree.   

 

From Figure 19, the shoulder width was measured in CISS to be approximately 0.15 m.   The test track data 

previously presented in Table 2 indicated that only the Volvo XC90 LKS interventions consistently (i.e., over 

a wide range of lateral velocities) prevented right-side lateral deviations below that distance.  Except for the 

lower lateral velocity conditions, the other test vehicles generally exceeded a lateral deviation of 0.15 m. 

 

 

 
Figure 19. CISS Case No. 1-19-2017-041-01 vehicle approach 

 

Lane Departure without Lane Markings 

There were 10 crashes identified where there were no lane markings on the road or on the side of the road 

departure. 

 

It is unknown whether any of the five vehicles tested were equipped with LKS systems capable of intervening 

in response to a circumstance where a lane departure is imminent, but only a road edge is present (i.e., no lane 

marker), as such conditions were not evaluated on the test track in this study.   Euro NCAP has adopted a test 

procedure that includes a limit of 0.1 over a road edge, as shown in Figure 20 using a test procedure similar to 

the LKS test described earlier but without the lane line. [Euro NCAP, 2017] 

 

 
Figure 20.  Euro NCAP road edge test condition 

 

CISS Case No. 1-19-2017-097-01 is an example of a road edge case.  In this fatal crash, the subject vehicle 

departed the roadway to the right where there was a disparate lane line and a discernable road edge (Figure 

21).  After departing the roadway, the vehicle traveled down a steep embankment, striking one or multiple 

trees and rolling over before coming to final rest.   To prevent this type of crash, it is expected the most 

effective LKS intervention would occur prior to the vehicle leaving the road since pavement provides greater 

lateral force (turning) capacity than an unpaved deformable surface.  With regards to intervention proximity to 

a lane line, the Volvo XC90 test track performance was indicative of this kind of operation; preventing the 
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vehicle from traveling past the line in each of the right-side approaches.  However, and as previously stated, it 

is unknown whether the Volvo XC90 LKS system has been configured to respond to an imminent road edge 

departure which, in this case, is essentially a lane departure without a clear marking delineating the right side 

of the lane.  This case provides evidence of why it may be important for an LKS system to address lane and 

road departures, to maximize the overall potential safety benefits provided by these systems during real -world 

driving where clear markings are not always present.  

 

 
Figure 21. CISS Case No. 1-19-2017-097-01 vehicle approach 

 

Lane Departure into Adjacent Lane 

Thirty-two of the ninety-three crashes shown in Figure 18 involved the subject vehicle drifting out of the 

initial travel lane into an adjacent lane.  Crashes that involve the subject vehicle drifting out of its lane result 

in head-on crashes with an oncoming vehicle or a road departure from the adjacent lane.  

 

With respect to LKS and the vehicles tested, it was determined that the roadway width in the adjacent lane was 

not a limiting factor as it exceeded the 0.4 m performance criteria .  Specifically, for the single vehicle crashes 

where the vehicle departed the road on the right side, many of the same observations that were discussed in the 

shoulder width section remain true with respect to the performance of the LKS.   If the LKS engaged in the 

test condition, depending on the lateral velocity, the LKS may have been effective in preventing many of these 

adjacent lane crashes that did not involve another vehicle traveling in the opposite direction. 

 

Of the 32 adjacent lane cases, over half were head-on crashes.  Ten were identified in NMVCCS and eight in 

CISS.  The analysis performed for this paper did not explore the location of the vehicles involved in head-on 

crashes relative to the lane marking at impact.  However, assuming the opposing vehicle does not travel into 

the subject vehicle’s lane, and if it can be assumed that if the subject vehicle’s LKS does not allow the subject 

vehicle to cross into the adjacent lane, the head-on crash would likely not occur.   

 

CISS Case No. 1-28-2017-032-01 is example where the subject vehicle encroaches into the adjacent lane and 

is involved in a fatal head-on collision.  The subject vehicle was traveling west on a two lane non-divided 

roadway.  A large truck was traveling east on the same roadway. The subject vehicle entered the truck’s lane, 

and a head-on impact resulted (Figures 22 and 23).   
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Figure 22. CISS Case No. 1-28-2017-032-01 vehicle approach 

 

 
Figure 23. CISS Case No. 1-28-2017-032-01 scene diagram 

 

Figure 24 presents the damage incurred by the subject vehicle.  Based upon the crush pattern and interaction 

with the truck, the subject vehicle likely crossed over the centerline and into the adjacent lane by well over the 

0.4 m allowance specified in the Euro NCAP LKA performance criteria.   

 

 
Figure 24. CISS Case No. 1-28-2017-032-01 front end crush of subject vehicle 

 

Other Lane Departure Cases 

There were four crashes that occurred at intersections where there were no lane markings leading up to the 

location of the lane departure.  It was apparent for each case, the subject vehicle was not turning and 

proceeding through the intersection.  Otherwise, lane markings were present leading up to the intersection.   

 

As discussed earlier (NMVCCS Case No. 2007-49-043) there was one crash where there were no lane markings 

on the side of the roadway departure and the road edge was delineated by a curb, over which the subject 

vehicle travelled.  It is unknown how LKS may have affected the outcome of these crashes where the lane 

markings are not present. 

 

Lastly, there were two cases (CISS Case Nos. 1-32-2017-013-01 and 1-28-2017-039-01), involving a vehicle 

parked on the shoulder.  The assessment of the LKS performance was similar to the ad jacent lane, head-on 
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crashes discussed earlier.  The effectiveness of the LKS is dependent on how far the vehicle deviates into the 

shoulder and the location of the parked vehicle.  The only way to assure the crash is avoided during an 

imminent lane departure is to prevent or minimize how far the vehicle encroaches into the roadway’s shoulder.  

 

CONCLUSION 

 

Five light vehicles equipped with LKS were evaluated on the test track using methods from the Euro NCAP 

LKA test procedure.  Specifically, the procedures evaluated a vehicle’s response to an imminent departure 

over a solid white line; tests to evaluate LKS system response to an unmarked road edge were not performed .  

These tests identified performance differences between the vehicles, and were somewhat dependent on the 

lateral velocity used during test conduct. 

 

When the test track performance of the vehicles was considered in the context of the road shoulder widths and 

road/lane/shoulder characteristics present in the 43 fatal NMVCCS and 50 CISS crashes analyzed for this paper, 

estimating whether LKS could have affected the crash outcome was found to depend on a number of factors.   

 

From an input perspective, the lateral velocity of the vehicle as it is directed toward the boundary of the lane, and 

whether that boundary is comprised of a clearly defined painted line or simply a pavement edge has the potential to 

affect whether an LKS intervention can even be expected. 

 

Even if the input conditions are such that a vehicle’s LKS activation criteria are satisfied, the ability of the system to 

effectively address the pre-crash scenario depends on a number of factors.  The amount of lateral deviation before or 

beyond the lane line and/or road edge, and the implications of it being too large, are important considerations.  In 

the case of a right-side departure away from the travel lane, excessive lateral deviation may result in at least part of 

the vehicle leaving the paved roadway.  Similarly, left-side departures with excessive lateral deviation have the 

potential to increase the risk of a head-on crash. 
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Appendix 

 
Figure A1. Crash type descriptions. 
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Table A1. CISS Cases 

 

 

Case Number Charcterization Case Number Charcterization

1-19-2017-041-01 0.15 m 1-22-2017-036-01 Adjacent lane

1-11-2017-020-01 0.18 m 1-19-2017-048-01 Adjacent lane

1-22-2017-050-01 0.3 m 1-13-2017-008-01 Adjacent lane

1-23-2017-064-01 0.48 m 1-24-2017-014-01 Adjacent lane

1-32-2017-152-01 0.6 m 1-22-2017-046-01 Adjacent lane

1-22-2017-083-01 0.82 m 1-16-2017-048-01 Adjacent lane

1-20-2017-006-01 0.85 m 1-28-2017-032-01 Adjacent lane

1-22-2017-119-01 0.87 m 1-11-2017-033-01 Adjacent lane

1-20-2017-042-01 0.92 m 1-20-2017-084-01 Adjacent lane

1-18-2017-054-01 0.96 m 1-25-2017-024-01 Adjacent lane

1-19-2017-029-01 1.03 m 1-20-2017-103-01 Adjacent lane

1-22-2017-062-01 1.27 m 1-33-2017-090-01 Adjacent lane

1-17-2017-086-01 1.3 m 1-23-2017-102-01 Adjacent lane

1-22-2017-052-01 1.32 m 1-19-2017-113-01 Adjacent lane

1-28-2017-008-01 1.33 m 1-21-2017-074-01 Adjacent lane

1-30-2017-094-01 1.69 m 1-18-2017-073-01 Adjacent lane

1-20-2017-013-01 1.95 m 1-23-2017-130-05 Adjacent lane

1-20-2017-024-01 2.0 m 1-17-2017-095-01 Adjacent lane

1-13-2017-127-01 3.0 m 1-28-2017-046-01 road edge

1-32-2017-013-01 Parked Vehicle 1-28-2017-047-01 road edge

1-28-2017-039-01 Parked Vehicle 1-28-2017-048-01 road edge

1-33-2017-025-01 Intersection 1-19-2017-097-01 road edge

1-24-2017-029-01 Intersection 1-22-2017-104-01 road edge

1-11-2017-017-01 Intersection 1-12-2017-070-01 road edge

1-22-2017-059-01 Intersection 1-19-2017-140-01 road edge
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ABSTRACT 

A large volume of unstructured data exists in the automotive industry and needs to be analyzed to detect potential 
vehicle concerns. Much of this data is textual in nature since customer complaints are made through call center 
interactions and warranty repairs. Current approaches to detect potential vehicle concerns in text data include 
various keyword search methods. In this paper, we apply Natural Language Processing (NLP) and shallow machine 
learning methods on text data to create classifiers to detect the potential vehicle concern of airbag non-deployment. 
For this potential vehicle concern, we show the performance of multinomial Naïve Bayes (NB), Support Vector 
Machine (SVM) and Gradient Boosted Trees (GBT) classifiers against keyword search methods. We present 
challenges of classification model development related to the nature of automotive data and limited training data. 
Our findings provide insights on robust text classification approaches that can improve identification of potential 
vehicle concerns. 

INTRODUCTION 

Automotive corporations and the U.S. federal government [1] are driving improvements in product safety through 
the collection and analysis of both structured and unstructured (text) data.  Despite their efforts, a common problem 
facing large corporations today is how to extract meaningful insights about product safety from large volumes of 
unstructured, noisy data that they have accumulated in many disparate systems.  These data systems present clear 
opportunities for analyzing actionable information regarding product complaints and potential defects, but are 
commonly referred to as “dark data” because they are not easily analyzed due to their unstructured nature [2].  
Consider the text data of vehicle warranty claims, call center transactions, and product complaints on social media; 
these sources all contain valuable information that may describe potential vehicle concerns, but are not represented 
in a relational structure that can be easily queried.  In addition, large corporations, such as General Motors (GM), 
spend resources maintaining these data systems and encounter challenges efficiently extracting actionable 
information from them because these systems were not originally created for safety event detection.   

At the same time, the U.S. federal government has created several incident reporting and complaint collection 
systems for a variety of industries: the Food and Drug Administration’s (FDA) Adverse Event Reporting System 
(AERS) [3] for the pharmaceutical industry, the Federal Aviation Administration’s (FAA) Aviation Safety 
Reporting System (ASRS) [4] for the aviation industry, and the National Highway Traffic Safety Administration’s 
(NHTSA) Vehicle Owner Questionnaire (VOQ) [5] and Transportation Recall Enhancement, Accountability and 
Documentation (TREAD) [6] for the automotive industry.  The effort by the U.S. federal government in creating 
these systems is due to the public interest in ensuring that products created by these industries are safe for 
consumers.  Yet, the fundamental problem still exists; all of these systems contain large volumes of dark data 
because they all have varying degrees of unstructured data in the form of text.   

Ultimately, private industry and the U.S. federal government have a vested interest in developing techniques for the 
transformation of unstructured data into structured data to facilitate detection and monitoring of potential vehicle 
concerns within the automotive industry.  For both private industry and the government there is a need to produce 
statistics that provide an overview of how certain types of product failures are reduced in response to their actions 
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(product recalls, bulletins, etc.), but also to identify trends that should be addressed by those actions in the first place 
[7].  

In this paper we will describe GM’s efforts in utilizing Natural Language Processing (NLP) and shallow machine 
learning methods to transform unstructured text data into structured data that describes potential vehicle concerns 
[8].  The specific focus will be on the issue of airbag non-deployment, but we have expanded our approach to many 
other significant potential vehicle concerns.  To the best of our knowledge, we believe this publication to be the first 
instance of NLP and shallow machine learning to be presented in the context of safety monitoring within the 
automotive industry.   

Data for this effort originates from a variety of sources ranging from GM internal data (warranty claims, customer 
call center transactions) to public data managed by the U.S. government (NHTSA VOQ).  For the scope of detecting 
narratives that involve airbag non-deployment, results presented in this paper will be constrained to NHTSA VOQ 
and TREAD data.  Given their utility for the task of text classification, we present results for multinomial naïve 
Bayes, support vector machine and gradient boosted trees classifiers compared to traditional keyword-based pattern 
matching methods.  We also discuss fundamental components of developing these classifiers, such as training set 
development and NLP pipeline development.  Through the work described in this paper, it is our hope that we 
significantly advance the concept of detection and monitoring of potential vehicle concerns within the automotive 
industry. 

BACKGROUND 

In order to improve collision outcomes for occupants, front airbags work in concert with seat belts to restrain driver 
and front passenger seat occupants by inflating when vehicle sensors, measuring acceleration at various vehicle 
locations, indicate a moderate to severe frontal impact [9].  Airbag deployment is controlled during collision by a 
complex algorithm that assesses data from multiple vehicle sensors, such as occupant presence, change in velocity 
(delta V), time to max delta V, principal direction of force (PDOF) and others, to determine whether frontal airbags 
should deploy [9].  The complexity of the algorithm may contradict the assumption by vehicle occupants that the 
airbags were faulty in not deploying during a collision. 

The value in detecting potential airbag non-deployment events is to enable investigation into these potential vehicle 
safety concerns by vehicle safety engineers.  In the effort to decrease fatalities in frontal collisions related to 
potential system failure of frontal airbags, reliable, accurate, and robust detection methods in unstructured data are a 
critical first step. 

Data Sources for Classification 
Human-labeled datasets required for supervised methods were sourced from two corpora – NHTSA VOQ and 
TREAD data.   

NHTSA VOQ is a publicly available dataset and consists of customer safety complaints about automotive products. 

 

The customer complaints dataset “contains all safety-related defect complaints received by NHTSA since January 1, 
1995” [5].  NHTSA receives complaint documents from various sources including: (1) online submissions from by 
the general public, (2) vehicle owner questionnaire submitted by the general public, (3) the auto safety hotline 
submitted by the hotline operator and (4) consumer letters.  

Figure 1. Sample NHTSA VOQ document describing a potential airbag non-deployment event. 

JULY 20, 2016, WE WERE REAR ENDED BY A HONDA ACCORD DOING 40 MPH WHILE WE WERE 
STOPPED AT A LIGHT. THE IMPACT SLAMMED US INTO THE CHEVY SILVERADO IN FRONT OF US. 
NEITHER AIRBAG DEPLOYED. 
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TREAD is a GM-internal data source that is of interest for potential vehicle concern monitoring because it 
consolidates data from many disparate systems.  The TREAD Act, which describes the requirements for GM’s 
TREAD data system, was created in response to the Ford/Firestone issue and significantly changed the information 
automotive OEMs must report to the U.S. federal government [6].  The TREAD Act requires manufacturers to 
submit information related to substantially similar vehicles that may have different names, foreign fatalities, notices 
of foreign safety recalls and other safety campaign information and Early Warning Reporting (EWR).  The EWR 
component of the TREAD Act results in GM compiling data from many disparate systems.  As such, GM’s TREAD 
data provides a broad cross-section of data from many business areas and large volumes of unstructured text data.  
The centralized nature of this data source is the primary motivating factor for its use in analyzing potential vehicle 
concerns. 

Prior Detection Methods 
Prior to the work described in this paper, potential vehicle concerns were monitored in both GM internal and public 
data sources using IBM Watson Explorer (previously known as IBM Content Analytics).  Watson Explorer provides 
a proprietary version of Apache Lucene that employs an Unstructured Information Management Architecture 
(UIMA) pipeline for indexing, searching and analyzing text data.  Watson Explorer annotators and dictionaries were 
used as the primary method for transforming unstructured data into structured data [10]. 

Annotators are compound rule sets for labeling text documents for a specific potential vehicle concern.  Each rule 
within an annotator is designed to match a specific pattern of text.  The pattern of text defined by an annotator may 
be a specific sequence or utilize Boolean logic to detect the presence of one or more words in a sentence, paragraph 
or document.  Dictionaries are used to define the terms used in pattern matching.   

An annotator defining airbag non-deployment could be applied to the document in Figure 1.  Such an annotator 
would include a sequence rule matching a pattern of negation (“NEITHER”), followed by the airbag system 
(“AIRBAG”), followed by a mention of deployment (“DEPLOYED”).  This complex rule would require a negation 
dictionary, an airbag system dictionary, and a deployment dictionary.  All dictionaries would be required to include 
synonyms, misspellings and alternative forms of the base terms.  For example, one would need to account for 
representations of the airbag system as “AIRBAG”, “AIRBAGS”, “AIR BAG”, “SUPPLEMENTAL RESTRAINT 
SYSTEM”, etc.  A document stating, “AIRBAGS NEVER DEPLOYED” would not be flagged by the sequence rule 
because the airbag system is now in the first position of the pattern and negation is in the second position.  To 
mitigate this issue, a Boolean rule would need to be developed that looks for airbag system, negation and 
deployment in the same sentence while ignoring sequencing.  Utilizing Boolean logic loosens the pattern and can 
lead to tradeoffs between false positives and false negatives. 

An IBM Watson Explorer annotator was designed to detect airbag non-deployment in NHTSA VOQ and TREAD.  
This annotator was developed using subject matter expertise and the same training data was used to develop 
machine learning methods described in later sections.  The airbag non-deployment annotator serves as the baseline 
for comparing performance of machine learning methods. 

METHODS 

All document classification models combine supervised machine learning classification with the addition of standard 
Natural Language Processing (NLP) techniques to effectively transform unstructured text data into structured data.  
The general process used in this exercise consisted of: (1) training set development, (2) text preprocessing, (3) 
model development, and (4) and model assessment.   
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Training Data 
Training sets were first developed to facilitate machine learning model development.  Vehicle safety experts at GM 
collaborated to define airbag non-deployment events and related document characteristics.  Potentially related 
document characteristics vary by dataset and consist of inclusion and exclusion criteria focused on terminology, key 
words, and circumstances described.  Resulting definitions were documented and used as the basis for training data 
sampling and labeling.   

The training set was developed for airbag non-deployment using NHTSA VOQ and TREAD data.  Training samples 
from NHTSA VOQ were not restricted to GM manufactured vehicles since airbag non-deployment allegations are 
found among other automotive manufacturers.  Qualitatively, the customer complaints describing airbag non-
deployment within NHTSA VOQ were notably homogeneous across automotive manufacturers.  The resultant 
labeled training set contained 2003 documents of which 1000 were sourced from NHTSA VOQ and 1003 were 
sourced from TREAD data.  Within the overall labeled training set, there were 916 positive examples of airbag non-
deployment and 1087 negative examples. 

Text Preprocessing 
Text preprocessing is commonly implemented in text analytics solutions.  The goal of text preprocessing is to 
increase the homogeneity of the corpus through data standardization, aggregation of semantically similar terms and 
removal of words that contribute little to analysis. 

Multiple text preprocessing techniques were used in this exercise including: (1) case standardization, (2) stop word 
removal, (3) contraction expansion, (4) lemmatization, (5) standardization of dollar values, units of speed and 
numbers and (6) removal of non-alpha-numeric characters.  These techniques were applied to the labeled datasets 
prior to analysis using a custom developed Python program.   

Model Development 
NLP and machine learning pipelines were developed to evaluate the use of different machine learning methods to 
detect airbag non-deployment narratives.  In text analytics, it is common that most effort in model development is 
spent on feature extraction.  Features in this context are individual measurable properties extracted from the text that 
will be used to predict labels on documents (classification) [11].  Furthermore, features extracted in text analytics 
may include n-grams which are sequences of two or more words (i.e. “red wine” is a bi-gram, “engine control 
module” is a tri-gram).  Pipelines are a collection of processes that can be used to transform data and fit classifiers in 
a defined sequence.  Figure 2 depicts the steps included in the model fitting pipelines.  Steps include: (1) feature 
extraction, (2) feature encoding, (3) feature selection and (4) classifier fitting.  Pipeline parameters were tuned using 
grid search, evaluated using industry standard metrics, tested for generalizability using cross validation, and 
developed using open source data science technologies. 
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Figure 2. Model development pipeline. 

Feature Extraction & Encoding: Features were extracted from the corpus as individual words and also 
included n-grams, which are a sequence of n adjoining words in a document.  For example, if a document read 
“NEITHER AIRBAG DEPLOYED” bi-gram extraction, where n equals 2, would yield “NEITHER AIRBAG” and 
“AIRBAG DEPLOYED.”  Text features were restricted to bag of words (BOW) representations [12].   

All features extracted from the labeled data were encoded using Term Frequency-Inverse Document 
Frequency (TF-IDF, Equation 1).  TF-IDF is a feature encoding technique that weights how important a word is in a 
document within a corpus.  Term Frequency ( , ) describes the frequency of a term or token (t) within a particular 
document (d) while Inverse Document Frequency ( ) describes the inverse of the number of documents in the 
corpus that contain the term (t) 

- , = , ×      (Equation 1) 
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Since both TF and IDF are raw frequency measures, it is common to utilize re-scaled and smoothed 
variants.  Sublinear TF ( , ) is described in Equation 2.  A smoothed version of IDF is described in Equation 3 
where  is the number of documents in the corpus. 

, = 1 + , 				 	 , > 00																							 ℎ    (Equation 2) 

= + 1    (Equation 3) 

In general, frequently occurring terms have low TF-IDF weight and rare terms have a high TF-IDF weight.  
TF-IDF can be used to devalue words such as “VEHICLE” and “DRIVE” which frequently appear in automotive 
data but were not filtered out during text preprocessing.  Furthermore, “DEPLOY” occurs in a considerable number 
of documents in the training data and would have a lower TF-IDF weight compared to other words.   

Feature Selection: Feature selection is applied prior to classifier training to select the most relevant 
features for classification. The chi-squared test measures the dependence of the features on the classes being 
modeled.  Features identified as being independent of a class will have a low chi-square test statistic and are not 
considered useful for classification.  Each extracted feature is ranked by the chi-square test statistic from largest to 
smallest and the top q% of features are used for the model algorithm.  The proportion of features selected, dictated 
by q, is one of the parameters varied in the model fitting pipelines. 

Binary Classifiers: Given that detection of airbag non-deployment is a signal detection problem with a 
binary outcome/class (presence or absence, 1 or 0, yes or no), several binary classification machine learning 
algorithms were utilized in the model fitting pipelines.  The objective in utilizing these algorithms is to fit a model 
on the extracted and selected features such that the model generates accurate predictions about the binary classes in 
the training data. These classifiers are discussed below. 

Naïve Bayes: Multinomial Naïve Bayes (NB) is a widely used generative classifier in which the conditional 
probability is used to determine whether a document belongs to a class [12]. The most well-known use of NB in 
NLP is in sentiment analysis [12]. 

NB assumes independence for all features and can work well depending on the validity of this assumption. 
In NLP, NB feature independence would require a word in a document to occur independently of every other word.   
Since word independence is a false assumption regarding text, we included n-gram word sequences to partially 
capture word dependence.  

Linear Support Vector Machines: Support vector machines (SVM) is a classifier that divides data into two 
classes using a hyperplane that maximizes the separation of data in each class [13, 14]. SVM has been used in text 
classification successfully and tests have shown it to be better than naïve Bayes in document classification [15].  
SVM is well-suited for high-dimensional data and text feature extraction commonly results in hundreds of thousands 
of features.  

Gradient Boosted Trees: Gradient Boosted Trees (GBT) is an ensemble model that uses several weak 
learners together to minimize the loss of the model [16]. The composition of the results from the weak learners is 
performed by gradient descent. New trees are iteratively added to the ensemble to reduce a loss function.  
Generating a GBT model is computationally expensive because each tree is a sub-classifier that is individually 
developed and the ensemble classifier is refitted at each iteration. 

GBT have been used in sentiment analysis in situations in which there are insufficient data to train other 
classifiers successfully. For example, it has been used in sentiment analysis with the Greek language where data is 
not plentiful [17].  Since we are working with a relatively small amount of training data, this method could be 
optimal for our situation. The largest limitation of this method is the computational cost created by the high-
dimensional feature space of NLP problems. 
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Cross Validation & Hyperparameter Optimization: A critical component of the model development 
process included the application of a rigorous and systematic method to find the optimal models and their respective 
parameters.  Grid search is an exhaustive hyperparameter optimization technique where model pipelines are fitted 
using all possible combination of supplied parameters. To find the optimal parameters for the models described in 
this paper we applied a grid search over relevant parameters in the model pipeline.  For example, we varied feature 
extraction and selection parameters, such as the chi-square proportional cutoff.  Each of the models also had specific 
parameters relevant to those models.  For example, the prior probability parameter was varied for the NB model and 
the slack parameter was varied for the SVM model. 

Evaluation and testing is performed using k-fold cross-validation. In k-fold cross validation the data is 
divided into k groups.  Five groups were used in this exercise.  Four of the five groups are used to fit the model 
pipelines and the remaining group is used to evaluate the trained classifier. This process is repeated until each group 
is used for evaluation of the classifier.  The pipeline with the highest average validation F1 score is determined by 
the grid search. 

Model Assessment 
The intersections of labeled and classifier predicted classes are depicted in Figure 3.  In this case, true positives (TP) 
are occurrences where the classifier correctly indicated an airbag non-deployment event.  True negatives (TN) are 
occurrences where the classifier correctly did not indicate an airbag non-deployment event.  False positives (FP) are 
occurrences where the classifier incorrectly indicated an airbag non-deployment event. False negatives (FN) are 
occurrences where the classifier incorrectly did not indicate an airbag non-deployment event.  False positives and 
false negatives are analogous to Type I and Type II errors in statistical hypothesis testing respectively. 

Classifier Predicted Classes 

1 0 

L
ab

el
ed

 C
la

ss
es

 

1 
True Positive 

(TP) 
False Negative 

(FN) 

0 
False Positive 

(FP) 
True Negative 

(TN) 

Figure 3. Confusion matrix used to measure binary classification processes. 

Precision, recall, and F1 are commonly used metrics to assess binary classification methods [15].  These metrics 
build upon test results described within the confusion matrix (Figure 3).  Precision is a measure of model 
performance and is expressed in Equation 4 where precision is calculated by dividing true positive occurrences ( ) 
by the sum of  and false positives ( ) occurrences. =  (Equation 4) 

Recall is a measure of completeness and is expressed in Equation 5 where recall is calculated by dividing true 
positive occurrences ( ) by the sum of  and false negative ( ) occurrences. =  (Equation 5) 

F1 is the harmonic mean of recall and precision and was used to assess overall model performance in this exercise.  
Equation 6 states that F1 is two times the product of precision and recall divided by the sum of precision and recall. 1 = 2 ∙ ∙ 		(Equation 6) 



Eboli  8 
 

RESULTS 

Three machine learning classifiers, Multinomial Naïve Bayes (NB), Support Vector Machines (SVM), and Gradient 
Boosted Trees (GBT) were compared to text annotators to understand which method performed better in identifying 
potential airbag non-deployment events in text.  The primary method of comparison was by F1 score. 

Across all data, SVM and GBT showed a similar performance with identical F1 scores of 91.3% (Table 1, graphed 
in Figure 4).  Consistent with identical F1 scores, both SVM and GBT had very similar recall (92.5% and 92.0%) 
and precision (90.2% and 90.7%) as shown (Table 1).  The NB classifier had the poorest performance of the three 
tested machine learning models (F1 NB 87.8% compared to 93.1% for SVM and GBT, Table 1).  Despite its poor 
performance, the NB classifier performed far better than the annotator across all the data (F1 62.4%, Table 1).  

When analyzing by data source (Figure 5), the annotator shows a competitive performance for TREAD (F1 71.2%), 
which out-performs Naïve-Bayes (F1 64.2%).  For VOQ, however, the annotator showed inferior performance (F1 
59.1%, Table 2) versus NB (F1 92.3%, Table 2). The profile of TREAD, which is a collection of disparate data 
sources, is likely to be the reason for the reduced F1 classifier scores relative to the more consistent data exhibited 
by VOQ.  In all cases, however, neither the annotator nor the NB model outperformed the SVM or GBT models 
(Table 2). 

Table 1. 
Comparative results of machine learning classifiers across all input data using F1, Recall and Precision. 

 F1 Recall Precision 
Annotator 62.4% 54.3% 73.5% 

NB 87.8% 89.1% 86.6% 
SVM 91.3% 92.5% 90.2% 
GBT 91.3% 92.0% 90.7% 

 

Table 2. 
Comparative results of machine learning classifiers by data source using F1. 

F1 VOQ TREAD 
Annotator 59.1% 71.2% 

NB 93.4% 64.2% 
SVM 95.0% 76.3% 
GBT 94.6% 78.4% 
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Figure 4. Graph of comparative results of machine learning classifiers across all input data using F1, Recall 
and Precision. Machine learning is represented by Naïve-Bayes (NB), Support Vector Machine (SVM) and 
Gradient Boosted Trees (GBT). 
 

 

Figure 5. Graph of comparative results of machine learning classifiers by data source using F1. Machine 
learning is represented by Naïve-Bayes (NB), Support Vector Machine (SVM) and Gradient Boosted Trees 
(GBT). 

CONCLUSIONS 

The results shown in this paper illustrate the potential power for machine learning in transforming unstructured 
“dark data” into meaningful safety event detection.  Machine learning methods demonstrated greatly improved 
classification performance (F1 score, precision, recall) in NHTSA VOQ and TREAD data than IBM Watson 
Explorer annotators for classification of airbag non-deployment narratives.  This was true even in our scope, where 
training data was scarce and from a variety of data sources. Machine learning models also exhibited better balanced 
classification solutions compared to annotators which would tend towards having high recall at the cost of precision 
or vice versa.  

The machine learning models yielded the worst classification performance on TREAD data.  Indeed, the F1 scores 
for the three machine learning models tested were 16.2% to 29.2% worse for TREAD data relative to VOQ data.  
TREAD is the compilation of many disparate data sources at GM.  We believe the reduced classification 
performance of TREAD is consistent with the heterogeneous nature of the data.  It is likely that more training data 
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will be required to increase TREAD classification performance since more TREAD data will include more of each 
of its constituent data sources. 

Despite the improvement in detecting potential airbag non-deployment events, these methods have a number of 
limitations related to machine learning approaches in general.  First, these supervised machine learning approaches 
require human-labeled data in large quantities to use for training data.  Second, machine learning models can only 
account for features (words) that have been observed in training data.  If GM, the U.S. federal government and/or 
the U.S. public at large were to develop a new term for an airbag, then that term would be unknown to the model 
described in this paper unless new training data with the new term in it were used to re-fit a new version of the 
model.  Last, our methods ignore the structure of documents and additional information, such as parts of speech 
(POS), for words.  Such grammatical information may improve the robustness and increase the performance of our 
predictive models. 

The application of machine learning methods for detection of potential vehicle concerns presents a robust, reliable 
and accurate solution.  The transformation of unstructured text data into structured data enables subsequent time 
series analysis of potential airbag non-deployment signals, including comparative trend analysis, anomaly detection, 
and control charting.  Future work will also focus on methods to improve model performance and reduce potential 
training data bias.  Extracting additional features from the text, such as word POS tags, Named Entity Recognition 
(NER) tagging or tagging text with an ontology, may provide significant performance gains.  Additionally, word 
embeddings could be used as an alternative feature encoding scheme which would capture the semantic meaning of 
the words being modeled [18].  Utilizing the concept of “data programming” to create large training sets quickly 
may also enable the transition from shallow learning methods (NB, SVM and GBT) to deep learning methods, such 
as recurrent neural networks (RNN) utilizing long short-term memory (LSTM) [19]. 

The data sources used in this paper represent one public and one internal GM data source.  Given the robustness of 
machine learning text classification methods, we intend to expand the application of these models to other publicly 
available and GM internal data sources.  Social media data, such as Twitter, Facebook and automotive forums, 
contain similarly unstructured data that may describe airbag non-deployment events that are valuable to detect.  

We have applied our NLP and machine learning methods to other areas of potential vehicle concern and have been 
able to increase safety event detection F1 scores by 8 – 24% (Figure 6).  In addition, these increases in F1 score for 
safety event detection have occurred rapidly.  While annotator development in IBM Watson Explorer required 
detailed development of a deterministic ruleset by a human over months, a machine learning algorithm arrives at an 
optimal solution in minutes.  Given that training data is required for both approaches, the transition from annotators 
to machine learning methods was a natural one. 
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Figure 6. Classification performance improvements for other vehicle safety events.  For each event, a specific 
machine learning model was developed. Each machine learning model is compared to an existing annotator 
based on F1 score. 
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ABSTRACT 

Motor vehicle crashes remain a significant problem in the US and worldwide.  Automatic emergency braking (AEB) 

is designed to mitigate the most common crash mode: rear-end striking crashes.  However, assessing the efficacy of 

AEB in real-world crash scenarios is challenging given that avoided crashes are rarely documented except during 

naturalistic driving studies.  Unfortunately, a large-scale naturalistic driving study involving AEB-equipped vehicles 

has yet to be conducted.  In the absence of such data, AEB can be evaluated in real-world crash scenarios by 

retrospectively adding AEB to naturalistic crash data using counterfactual simulations.  Previous counterfactual 

simulations have purported the potential benefit of AEB; however these studies often make simplified assumptions 

about vehicle dynamics.  To this end, the current study aimed to conduct the most realistic AEB counterfactual 

simulations to date by using measured host and lead vehicle dynamics data and vehicle-specific AEB deceleration 

profiles as well as accounting for driver reaction and environmental conditions.  The SHRP2 Naturalistic Driving 

Study was reviewed to identify rear-end striking crashes among teen (16-19 yrs), young adult (20-24 yrs), adult (35-

54 yrs), and older (70+ yrs) drivers.  Forty rear-end striking crashes that had reliable radar data were identified to 

serve as a basis for counterfactual simulations.  Real-world AEB deceleration profiles were taken from IIHS AEB 

test data.  IIHS AEB tests were matched to SHRP2 vehicles by selecting the most recent IIHS AEB test of the same 

make and vehicle class.  AEB onset for SHRP2 crashes was based on a brake threat number (BTN) algorithm.  The 

BTN was adjusted to match IIHS measured AEB onsets using minimum RMSE.  AEB curves were then adjusted to 

match the speed of the subject vehicle at AEB onset.  AEB deceleration curves were also scaled based on road 

surface conditions.  Driver reaction was accounted for by beginning the deceleration curve at the current driver-

initiated braking level.  Counterfactual simulations were conducted using MATLAB to determine if AEB would 

have prevented the rear-end striking crash.  AEB was found to be very effective, preventing 80% of rear-end striking 

crashes; greater than previously reported.  Half of all crashes that were not prevented by AEB occurred during poor 

weather conditions.  This study provides the most realistic counterfactual evaluation of AEB to date, utilizing real-

world crash dynamics, driver reaction, road surface conditions, and measured AEB deceleration pulses. These data 

suggest that AEB is very effective at preventing rear-end striking crashes.   
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INTRODUCTION 

Motor vehicle crashes continue to be a significant problem in the United States and worldwide.  While the National 

Center for Statistics and Analysis found a decrease in the number and rate of fatal crashes in 2017 [1] as well as for 

the first half of 2018 [2] – bringing the US out of a multi-year increase in fatal crashes – motor vehicle crashes 

remain a leading cause of death for those 65 years and younger as well as the second leading cause of unintentional 

injury-related deaths [3].  Globally, road traffic fatalities remain a leading cause of death, particularly among low to 

middle-income countries [4]. 

Advanced driver assistance systems (ADAS), such as forward collision waring and lane keeping assist, have the 

potential to mitigate these crashes, reducing overall crash severity, injuries, and deaths.  Previous injury reduction 

models have suggested that ADAS can prevent up to 57% of crashes and resulting injuries [6-12].  Automatic 

emergency braking (AEB) is designed to mitigate the most common crash mode: rear-end striking crashes.  

However, assessing the efficacy of AEB in real-world crash scenarios is challenging given that avoided crashes are 

rarely documented except during naturalistic driving studies.  Several studies have attempted to illustrate the 

effectiveness of AEB using statistical models or counterfactual simulations.  However, these studies have several 

limitations including (1) being based on archival data such as police reports and insurance claims which lack real-

world vehicle dynamics data, (2) have used idealized AEB deceleration profiles including step or ramp pulses and 

have assumed constant jerk, (3) have assumed a static lead vehicle, and (4) have not accounted for road conditions 

or driver reaction.  Naturalistic driving studies offer a unique opportunity to provide real-world data on these 

variables, which can serve as inputs for more realistic counterfactual simulations.   

The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) offers a unique opportunity 

to evaluate the potential efficacy of AEB on real-world crash scenarios.  SHRP2 crashes include vehicle dynamic 

data such as radar data, vehicle velocity, and vehicle acceleration [13], which can be used to provide more realistic 

inputs to counterfactual simulations.  Additionally, the Insurance Institute for Highway Safety conducts test-track-

based AEB evaluations of currently available vehicles and provides year/make/model specific information on 

deceleration profiles and activation times through IIHS TechData [14].  Therefore, the current study aims to evaluate 

to efficacy of AEB by recreating SHRP2 rear-end striking crashes with the presence of AEB using measured 

deceleration profiles to determine if the application of AEB would have effectively prevented rear-end crashes. 

METHODS 

This study protocol was approved by the Institutional Review Board at the Children’s Hospital of Philadelphia. 

SHRP2 Dataset 

A subset of the SHRP2 NDS data set was obtained via a data use license with the Virginia Tech Transportation 

Institute (VTTI). Scene videos, incident type, and times series data pre- and post-event including vehicle velocity, 

acceleration, and radar data were obtained for all crashes (n=1317) previously identified by VTTI for four age 

groups: teens (16-19 yrs), young adults (20-24 yrs), adults (35-54 yrs), and older adults (70+ yrs). Time series data 

ranged from 20 s prior to 10 s post event and were collected at 10 Hz. 

Data Reduction 

Rear-end striking crashes were defined as events where the subject vehicle contacted a lead vehicle.  Rear-end 

striking crashes were identified using scene videos and event narratives by two independent video coders.  Any 

discrepancies were reconciled by the study team.  Rear-end striking crashes were then reviewed for reliable radar 

data.  Events with missing or unreliable radar data were excluded from the analysis.  Event data including vehicle 

velocity and acceleration, relative distance to the lead vehicle, and road surface conditions were used to conduct 

counterfactual simulations.   

AEB Counterfactual Simulations 

The SHRP2 database includes the year, make, and classification (car, SUV/crossover, pickup, truck, van) for each 

vehicle involved in the NDS.  To generate realistic AEB deceleration profiles, measured deceleration curves for 20 

kph and 40 kph AEB tests conducted by the Insurance Institute for Highway Safety (IIHS) [14] were downloaded 
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from IIHS TechData (https://techdata.iihs.org) and used as inputs for the counterfactual simulations.  IIHS AEB 

tests were matched to each SHRP2 rear-end striking events by selecting the most recent IIHS AEB test with the 

same vehicle make and classification.  If a particular make or classification was not tested by IIHS or the SHRP2 

subject vehicle was no longer in production, a classification-matched vehicle from the parent OEM was selected. 

A brake threat number (BTN) algorithm [15] was used to determine the onset of AEB for each rear-end striking 

event.  To increase the accuracy of the BTN algorithm, the BTN activation curve was scaled to match the AEB onset 

times measured during the IIHS AEB tests.  Goodness of fit of the BTN activation curve was assessed using a 

minimum root mean square error (RMSE) criteria. 

If the vehicle velocity at the time of AEB onset was ≤ 20 kph, the 20 kph IIHS AEB tests were used for the 

counterfactual simulation.  Contrarily if the vehicle velocity at AEB onset was >20 kph, the 40 kph IIHS AEB tests 

were used.  Counterfactual simulations were conducted in MATLAB 2015a.  To account for changes in the AEB 

deceleration profile due to road surface conditions, the deceleration profile was scaled by a road surface friction 

factor [16]: dry=1.0, wet=0.7, snowy=0.3, icy=0.1.  To account for the driver’s braking reaction prior to AEB onset, 

the AEB deceleration curve was initiated at the vehicle’s current braking level.  To ensure that AEB deceleration 

profile was proportional to the subject vehicle’s velocity at the time of AEB onset, the deceleration curves were 

either (1) truncated by proportionally scaling down the AEB curve in both magnitude and duration or (2) 

extrapolated by extending the steady-state portion of the AEB deceleration using a spline fit. 

To simulate changes in vehicle dynamics due to AEB activation, the following equations were used: 

 

(Equation 1) 

(Equation 2) 

 

taeb = time of AEB activation 

tcrash = time of original SHRP2 crash 

Aaeb = subject vehicle acceleration with AEB 

VSV = velocity of subject vehicle 

Vaeb = velocity with AEB activation 

XLV = relative distance to lead vehicle 

Xaeb = relative distance to lead vehicle with AEB activation 

 
If Vaeb reached zero prior to the time of the original SHRP2 crash, it was concluded that AEB prevented the crash.  If 

the addition of the AEB deceleration caused the simulation to extend beyond the time of the original SHRP2 crash, 

the lead vehicle velocity was assumed to be constant and the equations below were used: 

 

(Equation 3) 

(Equation 4) 

If Vaeb reached zero and Xaeb > 0, it was concluded that AEB prevented the crash. 

RESULTS 

A total of 99 rear-end striking crashes among 95 drivers were identified from the four age groups.  Among these 

rear-end striking crashes, 30 events had no radar data.  An additional 29 events were removed due to unreliable radar 

data. The final dataset for counterfactual simulations consisted of 40 rear-end striking crashes.   

https://techdata.iihs.org/


Seacrist 4 
 

Exemplar counterfactual simulations for a prevented and non-prevented rear-end striking crash are shown in Figure 

1.  AEB was found to be very effective, preventing 80% (n=32) of simulated SHRP2 rear-end striking crashes with 

reliable radar data.  Half (4 of 8) crashes that were not prevented occurred during poor weather conditions. 

  

Figure 1. Exemplar prevented crash (left) and non-prevented crash (right). 

LIMITATIONS 

Several limitations warrant discussion.  First, AEB is typically coupled with forward collision warning (FCW).  The 

current study assumed the FCW did not alter the driver’s reaction to the crash.  Consequently, these counterfactual 

simulations represent the “worst-case” scenario for AEB.  Of note, drivers executed an evasive braking maneuver in 

33 (82%) of the simulated rear-end striking crashes.  Furthermore, among the seven events where the driver had no 

evasive maneuver, AEB was capable of preventing all seven crashes.  Consequently, the influence of FCW on these 

results is likely limited.  The current study also assumed AEB activated at all speeds.  However, this is not the case 

with all manufacturers.  While some OEMs are releasing high-speed FCW and AEB systems, most low to moderate 

speed systems have a peak AEB activation speed of 36 mph.  Consequently, the current study represents the 

potential of high-speed AEB to prevent rear-end striking crashes.  Finally, radar data were only available for a 

subset (40%) of rear-end striking crashes.  This possibly introduced selection bias because this subset may not be 

representative of all rear-end striking crashes in SHRP2.   

CONCLUSIONS 

To our knowledge, this study represents the most realistic counterfactual simulations of AEB effectiveness to date – 

utilizing measured vehicle dynamics, driver reaction, and road conditions from naturalistic data as well as measured 

AEB deceleration pulses.  Our findings suggest that AEB is very effective at preventing rear-end striking crashes.  

However, AEB was less effective for crashes that occurred in poor weather conditions.    
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ABSTRACT 
According to statements by the EU Commission, 95% of all traffic accidents involve human error, and in 76% of 
accidents, humans are solely to blame [1]. A similar picture also emerges in the settlement of damages by Alli-
anz Versicherungs-AG, and in detailed analyses of the accident research by Allianz Center for Technology. 
At the same time, human drivers set high standards with regard to road traffic safety. Based on market figures 
over the past few years, in Germany, a passenger car causes material damage only every 250.000 km, and per-
sonal injury every 2.3 million km. Since the 1960s, the number of liability claims per passenger car has de-
creased to a third of the previous figure, and today the claims frequency is at around 60 claims per 1.000 insured 
units per year [2]. 
Above the level of high vehicle automation [3] from which the driver is no longer responsible for continuously 
monitoring the vehicle and the driving task, however, completely new issues will arise in the road traffic acci-
dent statistics. In the case of highly automated driving, extremely high requirements must be placed on vehicle 
safety and on protecting functions in order to not only keep road traffic safety at the current level, but actually 
improve it significantly. Unfortunately, accidents in the USA with vehicle prototypes in highly automated driv-
ing mode show that some accidents cannot be prevented with the current state of technology. Coupled with this 
is the question as to how cases can be investigated should an accident or criminal misconduct involving a highly 
automated vehicle occur after the legal authorization of highly automated driving functions and their introduc-
tion into the market in the EU. 
As explained elsewhere [4], the German liability and insurance system is well suited to covering the risks that 
exist in the operation of highly automated vehicles. However, the selective operation of the vehicle by the driver 
and by a highly automated driving function raises fundamental questions concerning the investigation of cases in 
the event of accidents or traffic offenses.  
Early on, Allianz already supported creating conditions so that accidents involving automated vehicles can be re-
constructed in the future in order that victim protection, clarification of liability, and regress and product liability 
claims can still be ensured in a non-discriminatory manner. This is because, in the course of the motor vehicle 
insurer investigating a case and settling claims, particular importance is attached principally to the driving mode 
(highly automated driving/transfer phase/driver in control) in which the vehicle was moving at the time of the 
accident or the traffic offense. On the one hand, a driving error by the driver could be the cause of damage, on 
the other hand, errors by sensors, inadequate algorithms, deficient software quality or interoperability of systems 
cannot be ruled out as the cause of an accident. The driver’s statement that a collision or non-compliance with 
traffic regulations occurred after handing over control to the vehicle cannot be verified or disproved without a 
sufficient set of relevant data. 
 

DRIVING MODE RECORDER / DSSAD 
Whereas standards for the data logged in vehicle event data memories have been established in the USA for sev-
eral years (NHTSA DOT rule 49 CFR Part 563 [5]), outside the USA, there are no such standards to date. In the 
current stock of vehicles in the EU, reading accident data remains primarily a privilege afforded to the vehicle 
manufacturer. For external parties, for example experts, reading data is possible only – if at all – with high tech-
nical expertise, suitable reading devices, and still limited to some vehicle models. 
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This problem has been recognized by both the EU and the German government. Thus, in the course of amending 
the regulation UN ECE-R79 Steering systems, the “World Forum for Harmonization of Vehicle Regulations 
(WP.29)” develops continuous driving mode storage. The “Data Storage System for Automated Driving”, or 
DSSAD for short, is intended to store data relating to [5]: 
 
• GPS location and time  
• Activation of the AD System (Automated Driving Function) 
• Transition demands 
• Activation of a “minimal risk maneuver”  
• Takeover of the driving task by driver  
• System error 

 
These data elements are also required in § 63a StVG [7] of the German Road Traffic Act, amended in 2017, in 
the case a vehicle is equipped with a highly or fully automated function.  
 

 
Figure 1: Difference between DSSAD and EDR  

 
Figure 1 shows the difference between DSSAD and EDR. The DSSAD can clarify the question as to whether the 
vehicle or the driver is in control at a given time. But there is no trigger for data storage in an incident. Besides, 
it has not yet been determined how authorized persons or parties can access this data and in what location, inter-
nally in the vehicle or externally, said data have to be stored. Authorized persons or parties should have easy, 
tamper-proof, fair and non-discriminatory access to the relevant data elements. These requirements cannot be 
met when the data is solely stored in the vehicle. A brief example should illustrate this: 
A person drives on the freeway in highly automated driving mode and, after this journey, receives a penalty no-
tice as a result of having exceeded the maximum permitted speed by 20 km/h. If the data is stored only in the ve-
hicle, the person in question would have to drive to a workshop or to an expert so that the data can be read in or-
der to prove their innocence.  
In the digital age, in which vehicles drive in a highly automated or even autonomous mode, this investment of 
money and time cannot be considered appropriate. Therefore, the data should be stored externally and should be 
accessible online, or available on request. 
 
 

CONCEPT OF THE DATA TRUSTEE 

Regulated external data storage and management could be ensured in practice by the concept of an independent 
data trustee. The data trustee must treat the encrypted raw data transmitted online impartially and check author-
ized access by interested parties. Figure 2 shows the advantages of double storage, i.e. in the vehicle and with an 
independent data trustee. Vehicle data that can be attributed to the occurrence of an accident or a criminal of-
fense must not be made available exclusively to the driver, the insurer, the public prosecutors or the vehicle 
manufacturer. Independent data management by a trustee would ensure that the regulated dataset is accessible to 
all authorized persons or parties [2]. 
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Figure 2: in vehicle storage versus data trustee and in vehicle storage 

 
Example I: 
In the case of a notification of a claim where responsibilities are to be clarified, the vehicle owner requests a clar-
ification of the cause from the insurance company. On the basis of the owner’s request and authorization and a 
specific loss event, the insurance company requests the data from the data trustee. In turn, the data trustee dis-
tributes the re-encrypted data to the insurance company via a secure channel for further analysis and, if neces-
sary, to the OEM e.g. for product improvement (see Figure 3).  
Since the request to the data trustee is ideally made only via a vehicle ID that is generated at the beginning of the 
authorization, it is not possible for the data trustee to establish a connection between the owner and the vehicle 
data. 
 

 
Figure 3: Data Trustee Concept 

 
Example II: 
If an owner wishes to view their data independently of the insurance company, e.g. to check for possible self-
incrimination, they could make their request directly to the data trustee themselves or via the “Central Vehicle 
Register”, via their attorneys or via an expert. As an alternative to personal requests, anonymous requests could 
also be answered in this way.  
When data is transmitted to the data trustee, said trustee does not require any knowledge about the natural person 
with which a vehicle/driving mode memory is associated. From the perspective of the data trustee, the data is 
anonymous or under a pseudonym. 
The data trustee should not have any direct contractual relationship with the data owner. Likewise, the data trus-
tee should be independent and, in the relationship between the vehicle manufacturer, the vehicle owner, the driv-
er, the other party involved in an accident (if applicable), and the insurance company, should represent a neutral 
party without own interests. 
 
 
The data trustee guarantees the authenticity of the data (i.e. its origin and that it is unchanged) to the aforemen-
tioned parties and ensures that the (decrypted) data is provided  
 

a) only to authorized parties,  
b) only in authorized situations and  
c) only in the regulated scope.  
 

The trustee is also responsible for the security of the stored data against tampering, theft, etc.  
Since the dataset as well as the access to data is defined by law, there is no need for the vehicle owner to sign a 
declaration of consent to storage. A data trustee would be able to provide the data to fulfill statutory require-
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ments (e.g. a court order) without the permission of the data owner and, in standard circumstances, without ac-
cess to the vehicle.  
Technically, the requirements on data transmission can be met analogously, that is to say that the data transmis-
sion between the vehicle or the driving mode recorder and the trustee is carried out in a tamper-proof and tap-
proof manner under any circumstances.  
In this case, protecting the transmission via TLS (Transport Layer Security) is obvious, since this is an estab-
lished protocol which, in addition to the encryption, also ensures that the vehicle’s communication partner is also 
actually the chosen trustee. Additionally, a conventional asymmetric and symmetric encryption method could be 
used. Handling the data in this manner appears to be modern, convenient and fair. 
  

NEED FOR ADDITIONAL DATA 
As shown above some vehicle data have been subject to regulation, however the majority of vehicle data is not 
regulated in the EU. Figure 4 shows an overview of regulated and unregulated datasets in the EU. From the per-
spective of accident reconstruction, further standardization of the datasets would be desirable in order to clarify, 
in addition to the driving mode, the actual cause of the accident and additional questions of liability. An event 
data recorder is a prerequisite for: 
 
• the ability of the driver and the vehicle owner to exonerate themselves where necessary and to assert product 

defects or service errors (e.g. in the case of updates and patches) 
• protecting vehicle manufacturers and suppliers against unjustified claims 
• a fair basis in any product liability cases/regress claims between the vehicle owner or the insurance company 

and the vehicle manufacturer or supplier 
 

 
Figure 4: Overview of data handling in the EU 

 
With a view to international harmonization of standards, the profile of requirements in NHTSA DOT rule 49 
CFR Part 563 could be a starting point for standardized data logging. However, in the EU project VERONICA II 
[8] from 2007 to 2009, it has already been shown that this regulation also has its weaknesses in the triggering of 
an event and the correct interpretation of the data that is read. This also corresponds to the experiences in AZT 
[9]. In AZT crash tests, multiple tested vehicles from several manufacturers demonstrated good correlations with 
respect to the crash data when comparing external laboratory measuring equipment with the EDR data logged by 
the vehicle. The tests also show that it has to be provided that the limitations in data generation in the vehicle are 
recognized and taken into account.  
The analysis of EDR protocols from real road traffic accidents shows that in particular the pre-collision speed 
data cannot always be interpreted unambiguously, and data elements (such as the turn signal) often are not avail-
able for inferring liability. 
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Regarding triggering an event, it should additionally be noted that the US regulation is not specifically adapted 
for the requirements of automated driving, but is rather focused on restraint systems being triggered by a change 
in speed of above approximately 8 km/h within 150 ms as a result of an impact. In the variety of collisions and 
accident types that are settled by vehicle insurers, from a present-day perspective in accordance with evaluations 
by Allianz Center for Technology, an airbag is triggered only in a very low percentage of less than 3% of the set-
tled claims. Even fatal accidents involving vulnerable road users exceed the described trigger thresholds on ur-
ban road only in very few cases. However, based on 2016 data, in Germany, 27.8% of accidents with fatalities, 
33.2% of accidents with severe injuries and 27.8% of accidents with minor injuries in road traffic were attributa-
ble to accidents involving cyclists and pedestrians [10]. In addition, a research initiative by Allianz, Continental 
and Munich University of Applied Sciences showed that approximately 40% of all passenger car accidents with 
material damage are parking and maneuvering accidents [11]. In these collisions as well, the change in speed of 
the passenger car as a result of an impact is generally below the trigger threshold of the US regulation. 
With a view to protecting victims and clarifying questions of liability, in the future, a much higher percentage of 
accidents should be able to be captured and stored by an event data recorder in highly automated cars. 
 

OUTLOOK FOR AHEAD DATA MODEL 
Automated Driving requires a highly sophisticated degree of vehicle, event and accident information well above 
US-EDR standard for data capturing, period, recording, storage, retrieval and safety. The work group “AHEAD” 
(Aggregated Homologation-Proposal for Event-Recorder-Data for Automated Driving), established in 2017, a 
cooperation by Allianz, AXA, CARISSMA/TH Ingolstadt, Continental and DEKRA, has therefore committed to 
drafting detailed requirements for an event data recorder for vehicles with automated functions of level 3 and 
above. The aim is to develop a data model that allows transparent, non-discriminatory and tamper-proof accident 
reconstruction and is compatible with current data protection laws. Storing crucial vehicle data shall be limited to 
a short timeframe before, during and after a triggering an event with the goal of obtaining accurate, in-depth ac-
cident data. The technical level of EDR as defined in the VERONICA II Project (2007-09) and as referred to in 
the “European Parliament resolution of 27 September 2011 on European road safety 2011-2020 
(2010/2235(INI))” is a good starting point. But with regard to Automated Driving it is not sufficient any more. 
AHEAD has set out to update the requirements. Building on the results from the EU project VERONICA II and 
taking into consideration the automated driving functions, AHEAD describes data elements and organizes them 
into four standardized categories. According to the AHEAD White Paper [Error! Reference source not found.] 
the AHEAD Data Model includes but is not limited to the following data: 
 

 Driving Data  
o Vehicle Status, Operation Mode (e.g. manual, autonomous, remotely controlled), Speed, 

Yaw Angle, Control interventions of the assistance system, Takeover request 
o Diagnostic data of safety relevant systems and components (condition, status, system fail-

ures/ technical malfunction)… 
 Driver Activity  

o Video feeds from cabin cameras, Steering, Seat Position, Pedal Positions, Driver Alert-
ness… 

 Surroundings- and Object Recognition  
o Video feeds from front and rear-facing cameras, Sensor Data, Classified Objects, Object Po-

sition, Object Direction, Object Speed, Calculated Movement…  
 Crash  

o Date, Timestamp, Location, Acceleration, Collision Speed, Seat Belt Status, Airbag, Re-
straint System…  

o Sensor technology, e.g. advanced and sensitive trigger which recognizes accidents with low 
acceleration in order to detect and measure accidents with vulnerable road users involved, or 
parking/maneuvering accidents 

 
Whereas the required driving data, the data elements relating to driver activity and the crash data can be de-
scribed by individual signals, the data related to environment and object recognition consist of elements that may 
have already been merged, calculated and assessed, which make it possible to compare the generated model of 
the vehicle environment with the reality and to check the plausibility of the control commands of the vehicle. 
The process of generating a virtual world and moving in a real world provides a high potential for errors. A high-
ly automated vehicle must therefore provide data relating to this process. Since the calculation algorithms of 
manufacturers’ systems relating to sensor fusion, environmental model calculation and path planning of the high-
ly automated ego-vehicle are strictly confidential, storing the raw sensor data is insufficient in this case. 
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The vehicle sensors, the vehicle cameras and other networking or communication channels of the highly auto-
mated and connected vehicle must be able to keep track of the entire vehicle environment. In practice, this means 
multiple overlapping and redundant “sensor cocoons” [13]. The detected sensor signals must be checked for 
plausibility, classified, provided with a time stamp, prioritized and annotated a thousand times per second. Last-
ly, in the generated environmental model, the location of the ego-vehicle relative to its environment must be de-
termined in a repeatable manner and to within a centimeter. This processing of the signals can no longer take 
place by means of the bus systems used up to now, but rather must be processed by means of software blocks, 
which contain corresponding algorithms, on sensor platforms. The situational awareness of the highly automated 
vehicle which is calculated on said platforms part of the basis for the standardized data storage according to 
AHEAD.  
The raw data supplied by the sensors (camera, laser scanner, radar, ultra sound) is prepared and evaluated by a 
number of different algorithms. The environment with the objects located in it must be classified and located by 
different methods. Thus the actual state of the vehicle environment is determined on the basis of a model, taking 
into consideration weather and visibility conditions. By means of GPS data, HD card data, the inertial sensor, the 
cameras, the laser scanner, the radar and ultrasound sensors, the ego-vehicle can locate itself in said environ-
ment. So that the ego-vehicle can also move in this environmental model, the future must also be calculated. For 
this purpose, numerous assumptions about the movements of other objects must be made. If the system has de-
cided on path planning at a certain speed, this can ultimately be implemented in the form of control commands to 
the longitudinal and lateral control. 
One of the greatest challenges for AHEAD will be getting this variety of data to a suitable level and an enforcea-
ble standard. This must also be done in accordance with the following AHEAD Guiding Principles for access to 
vehicle data: 
 

 Consent  
 Fair and undistorted competition  
 Data privacy and data protection  
 Tamper proof access and liability  
 Data economy 
 Standardized interface 
 Crash resistance of data storage system in vehicle 
 Event Data Storage for limited period of time before and after an incident ( ~ 30 sec) 

 
Therefore the individual data elements required are continuously validated on the basis of real accidents and 
crash tests and evaluated and publicly discussed in various discussion groups. The AHEAD members invite 
stakeholders involved in setting the rules and requirements for Automated Driving (Parliament, Commission, 
Member States and others) to enter into dialogue. 
 

CONCLUSIONS 
An EU wide regulation with respect to a driving mode recorder, access to the data via a data trustee in combina-
tion with the introduction of an event data recorder for highly automated driving functions would have consider-
able advantages for the parties involved: 
 
• The main focus would be on the public interest in integrity and victim protection. 
• The ability of the driver and the vehicle owner to exonerate themselves where necessary and to assert product 

defects. 
• Protecting vehicle manufacturers and suppliers against unjustified claims. 
• Access to data would be politically endorsed and legitimized. 
• Fairness for all parties. 

 
In order for highly and fully automated driving to be widely accepted by society, the driver must only be able to 
be prosecuted for his own misconduct. It must therefore always be possible to clarify who is responsible (if the 
system has failed or if the person has failed). This driving mode data must be available for investigation through 
storage in order to clarify whether the vehicle was controlled by the automated system at the time of the incident 
or by the driver or was in the handover phase between the human driver and the automated system.  
The necessary data must be in the hands of a neutral, independent third party (data trustee) in order to allow all 
authorized persons access to the data under the same legal conditions. In addition to storing the data in the vehi-
cle itself, transmission to an independent third party is therefore mandatory. In the event of a vehicle being sold 
or after the vehicle has been destroyed in an accident, the data trustee is the only source of clarification in the in-
terest of all parties involved. 
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Moreover, for highly automated vehicles (Level 3 and higher), a standardized event data set from the vehicle in 
the event of an incident is required. Only in this way will it be possible in future to clarify accidents or legally 
punishable events involving automated vehicles in a proper and transparent manner. The AHEAD working group 
develops parameters for such a data set. The data model includes elements on the vehicle status, driving envi-
ronment, driving situation and driver activity which are defined for accident clarification. In addition trigger 
thresholds are defined with the goal of storing crucial vehicle data limited to a short timeframe before, during 
and after relevant events. 
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ABSTRACT 

New vehicles are increasingly equipped with a variety of Advanced Driver Assistance Systems (ADASs). As these 
systems have the potential to prevent accidents, accidents of the future will differ from those of today. Predicting the 
type and characteristics of these future accidents is therefore essential to current research and development in the 
occupant restraint and new ADAS fields. 

In this study, accident avoidance of 15 ADASs was modelled using simple deterministic rules for each, creating both 
a conservative and an optimistic ruleset to account for current limitations and future possibilities. The rulesets were 
applied to the US National Automotive Sampling System Crashworthiness Data System data from 1995-2015 and 
verified through the literature. The residual passenger vehicle to passenger vehicle accidents were analysed, treating 
all accidents and accidents with at least moderate injuries in modern passenger vehicles (model year 2007 and later) 
separately.  

Many accidents were found to be avoided through such systems, and their combined effectiveness ranged from 51% 
to 97% depending on ruleset. Electronic Stability Control (ESC), Lane Keep Assist (LKA), and Crossing and Rear 
End Automated Emergency Braking (AEB) were highly effective, individually preventing over 25% of accidents in 
the optimistic calculation. Importantly, remaining accidents will have a different distribution across accident types 
compared to today: rear end collisions will reduce, leaving turning and crossing scenarios to dominate future accidents. 

For passenger vehicle to passenger vehicle accidents with at least moderate injuries in modern vehicles, four accident 
types alone were found to account for 93% of all remaining accidents in the optimistic estimate: Head On, Turn Across 
Path, Turn Into Path Opposite Direction and Straight Crossing Paths; the latter three are intersection-related and 
together represent three quarters of all remaining accidents.  

The intersection accidents are analysed further for deformation pattern, impact direction, 90% cumulative delta 
velocity and injured occupant position in order to identify possible new impact conditions to be used when evaluating 
occupant restraints. The well-established frontal and side impacts will still generate many AIS2+ injuries, while new 
more oblique impact conditions will also be needed to represent the variety of intersection accidents remaining. 

The description of future accidents and impact conditions presented here can serve as a basis for the research and 
design of future ADASs and occupant restraints. We propose virtual assessment methods with Human Body Models 
(HBM) based on these impact conditions. 

INTRODUCTION 

More than six million police-reported motor vehicle accidents occurred in the United States in 2016; of the 37 461 
fatalities, 23 714 (63%) were occupants of passenger vehicles [1]. Over recent years, many Advanced Driver 
Assistance Systems (ADASs) have been introduced to the market, including Automated Emergency Braking (AEB) 
for rear end collisions and pedestrian impacts and Lane Keeping Assist (LKA), which are estimated to reduce the 
number of accidents significantly [2-8]. To reduce this number further, additional ADASs, such as AEB for 
intersections and Evasive Steering Assist (ESA), are under development as a stepwise progression to fully autonomous 
driving. Society of Automotive Engineers (SAE) describes these steps at five levels [9], where level 0 means no 
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driving automation and level 5 means full driving automation. Most ADASs today are designed for level 2, partial 
automation, which means that the driver needs to be fully engaged but the vehicle has automated emergency functions 
like braking and steering. Through monitoring the driver, driving environment and surrounding traffic, these functions 
intervene to prevent traffic accidents and support safe driving.  

With the number of ADASs in the vehicle fleet increasing, the frequency distribution of accident types will change 
over time. It is of importance to be able to predict which accident types will remain and which will predominate; this 
is needed not only to guide the development of new or improved driver assistance systems, but also to guide the 
development of occupant restraints. However, the real-world effect of new ADASs is difficult to determine since they 
are not yet widely deployed to the market. Attempts to evaluate this may broadly be categorized as either retrospective 
or prospective, as follows. 

Retrospective analyses tell what has happened. This is done by direct comparison of vehicles with and without the 
ADAS in question. Several researchers have reported on the number of accidents that could be prevented by various 
ADASs [3, 5, 10-14] using such an approach; however, newer ADASs like ESA, Driver Monitoring Systems (DMS), 
Traffic Jam Assist (TJA) and Highway Assist (HA) have not yet been evaluated as these have a rather low installation 
rate, making a retrospective investigation hard to execute. Retrospective analysis is also hard to execute if vehicles 
are equipped with several ADASs because any of the systems present may have prevented the accident and thus 
attributing the benefit to a specific ADAS is not clear-cut. 

Prospective analyses tell what will happen. Alvarez et al. (2017) define four levels of prospective analyses from level 
0, “Use of expert opinion to estimate the potentially addressed situations”, to level 3, “Use of simulation to generate 
reference situations (RS) and modified situations (MS) from the understanding and characterization of processes” 
[15]. Prospective analyses take in-depth accident data from accident scenes and then apply an intervention to assess 
its potential benefit. Such predictions are either made by detailed simulations or by some type of estimation. 
Simulation is used when a detailed understanding is needed, in which case a thorough set up of the accident boundary 
conditions is made. The ADAS is then applied to the situation to evaluate whether it prevents the accident or not. 
When simulating, it is also possible to vary the situation boundaries to evaluate situations that could have happened 
or to vary the magnitude of the intervention [16-18]. This method is by nature limited to the detailed data available 
and is time consuming since it requires the creation and validation of a simulation model as well as at least two 
simulation runs per accident, one reference and one modified with the ADAS. In contrast to this, the use of estimates 
for given situations gives an overall understanding of the potential of an ADAS [2, 19-21]. Assuming that a range of 
safety systems will be able to intervene in the future — for example, through the implementation of ADASs — one 
can model each of these interventions in low detail, apply this to historical crash data, and get estimations regarding 
future crashes which can be used to prioritize interventions and plan for subsequent ones [22]. This method has been 
validated for a 10-year time horizon using Swedish fatality data [23]. Although the result is not as detailed as for a 
simulation, it is nonetheless a significantly faster process. 

The objective of this study is to investigate which passenger vehicle to passenger vehicle accident types will remain, 
and how the impacted vehicles are deformed, in a future when today’s known Level 2 ADASs have been implemented. 
New impact conditions, guiding the evaluations of occupant restraints, are defined based on these deformations. A 
prospective approach is taken using estimates to examine the effectiveness of 15 ADASs in avoiding accidents. 

METHOD 

The method used in this study contains five steps: data collection; definition of ADAS rulesets; verification of ADAS 
rulesets; accident description; and analysis of the deformation pattern of the remaining impacted vehicles (Fig. 1). 
First, data regarding passenger vehicle to passenger vehicle accidents and single passenger vehicle accidents were 
extracted from the National Automotive Sampling System Crashworthiness Data System (NASS CDS). In the second 
step, two deterministic rulesets, one optimistic and one conservative, were created for today’s known ADASs, 15 in 
total. The rulesets were then applied to the data to calculate the effectiveness in avoiding accidents of each ADAS 
alone and in combination. The third step verified the rulesets by comparing the computed effectiveness to the literature 
for accident avoidance, irrespective of injury severity. In the fourth step, the accidents were analysed in terms of 
accident scenario and general area of deformation. This analysis was only done for passenger vehicle to passenger 
vehicle accidents where at least one occupant sustained a moderate injury, i.e. a number equal or higher than two on 
the Abbreviated Injury Scale (AIS). In the fifth and final step, the accidents still remaining after the optimistic ruleset 
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had been applied were analysed in terms of accident type, delta velocities, corresponding Collision Deformation 
Classification (CDC) codes and the position of injured occupants. 

Definition of terms 
Accident scenario: Accident scenarios describe the overall kinematics before and during an impact of both vehicles 
involved. Accident scenarios are taken as the combination of two NASS CDS variables: crash category and crash 
configuration [24]. Examples are Same Direction – Rear End, Intersection Path – Straight Path and Vehicle Turning 
– Turn Across Path. 

Accident type: Accident scenarios are divided into specific accident types (crash types in NASS CDS, in which 99 
different crash types are described) with each vehicle involved being allocated a type. Examples of accident types are 
Drive Off Road, Turn Into Opposite Directions and Striking from the Right. An accident having two vehicles is 
described by a combination: for example, one vehicle is described as “Striking from the Right” and the other by 
“Struck on the Right”. 

Deformation pattern: Deformation patterns describe each vehicle’s General Area of Damage (GAD), Principal 
Direction of Force (PDOF), and the Specific Longitudinal or Lateral Location of Deformation [25]. 

 

 

Figure 1. Description of the five steps used in the study 

1. Data collection 
Data regarding passenger vehicle to passenger vehicle accidents and single passenger vehicle accidents were collected 
from the NASS CDS database, a US nationwide accident data-collection program sponsored by the U.S. Department 
of Transportation. NASS CDS includes police reported accidents in which at least one involved vehicle is towed away 
due to damage. Details of around 5 000 accidents are collected every year and consist of accident scene 
reconstructions, interviews with police and vehicle occupants, medical charts, and detailed information about the 
vehicles involved. Data are collected on a representative stratified sample of minor, serious, and fatal accidents 
involving passenger vehicles (passenger cars, pickup trucks, and vans), large trucks, motorcycles, bicyclists, and 
pedestrians [26]. 

The data from 1995 to 2015 were extracted on accident level and weighted according to weighting factors provided 
in the NASS CDS (RATWGT) to compensate for sampling bias. Very heavily weighted accidents (greater than 5000) 
were removed from the dataset since such cases could influence the results in a disproportionate way [27]. This gave 
in total 83 038 unweighted and 33 022 646 weighted accidents, of which passenger vehicle to passenger vehicle 
accidents accounted for 52 462 (63.2%) unweighted and 22 308 978 (67.6%) weighted accidents. Passenger vehicle 
– Object/Run off/Rollover accounted for 30 576 (36.8%) unweighted and 10 713 668 (32.4%) weighted accidents. 

2. ADAS rulesets 
Today’s known ADASs, 15 in total, were modelled to address a broad range of accident scenarios. Functions were 
grouped where possible. As an example, Forward Collisions Warning (FCW) and Brake Assist System (BAS) were 
assumed to be included in the AEB Rear End, and Lane Departure Warning (LDW) included in LKA. A conservative 
and an optimistic ruleset were created for each ADAS to take into account its limitations and its potentially improved 
future performance [28]. The conservative ruleset contained limitations which, if present in the accident scenario, 
would prevent an ADAS from avoiding an accident. These limitations include harsh weather, poor road conditions, 
including snow and ice on the road, missing lane markings, and unstable vehicle dynamics from skidding or speeding. 
Each ruleset also has a specific speed range within which the ADAS intervenes. If all the conditions in the rulesets 
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were met, the accident was removed from the dataset, i.e. the ADAS prevented the accident. If the accident scene 
included a limitation, that specific accident was not avoided in the conservative estimate.  

It was assumed that all passenger vehicles in the dataset were equipped with all the ADASs; the rules did not take into 
account manual overriding. When calculating the effectiveness of all ADASs together, i.e. the combined effectiveness, 
an accident was only removed once. For example, a lane change related accident can hypothetically be avoided by 
both Lane Change Assist (LCA) and Blind Spot Detection (BSD), but it will only be counted once. For combined 
effectiveness, four groups were created, optimistic and conservative with and without speed limitation. The purpose 
was to identify what limited the effectiveness of the ADASs, i.e. the speed range or the conservative limitations.  

Input for speed range and limitations was derived from Euro NCAP assessment procedures [29-30], Euro NCAP test 
results [31], driver manuals [32-34] and web pages [35-37]. Each ADAS is listed in Table 1 with a brief description 
of which accident scenario it addresses. A concise description of how the ADAS rulesets were created using NASS 
CDS variables [25, 38] can be found in Appendix A and B. 

3. Ruleset verification and ADAS effectiveness in avoiding passenger vehicle accidents 
Rulesets were verified using reference values obtained from literature based on US data only. This was done to keep 
the conditions as similar as possible to those in the dataset and to minimize noise factors that could affect the result, 
such as differences in traffic environment or vehicle fleet. Both retrospective and prospective references were used in 
the verification process to get a range that could be compared to the conservative and optimistic rulesets. Retrospective 
studies normally give lower effectiveness estimates because they by design include all ADASs limitations. Table 1 
lists the 15 ADASs with descriptions and estimates of their effectiveness in avoiding single passenger vehicle and 
passenger vehicle to passenger vehicle accidents. 

4. Accident description 
In this step all passenger vehicle to passenger vehicle AIS2+ accidents were selected from the dataset and described 
by their accident scenario and general area of deformation, where each accident could either be:  

• Front–Front, both vehicles had damage to their fronts, coded blue. 

• Front–Rear, one of the vehicles had a damage to the front and the other had a damage to the rear, coded 
green. 

• Front–Side, one of the vehicles had a damage to the front and the other had a side damage to left or right 
side, coded red. 

• Other, the accident could be a Side–Side or Rear–Side impact, or be missing such data, coded brown. 

  

Accident scenario and general area of deformation were then combined to give an overview of the accidents (see Fig 
3). This was done for this for four groups A–D: 

A. All passenger vehicle to passenger vehicle AIS2+ accidents, N = 14 351 accidents, weighted to 2 005 362 
accidents. 

B. All passenger vehicle to passenger vehicle AIS2+ accidents with model year 2007 and later, N = 1 391 
accidents, weighted to 215 184 accidents. 

C. The residual of the conservative ruleset with speed limitation of group B, N = 761 accidents, weighted to 
 117 463 accidents. 

D. The residual of the optimistic ruleset with speed limitation of group B, N = 251 accidents, weighted to 42 
407 accidents. 

 

5. Analysis of accident type and deformation pattern of the remaining impacted vehicles 
To study the optimistic safety potential of the 15 ADASs, the accidents in group D were analysed by accident type to 
determine the most frequent ones. For the most frequent accident types, the vehicles with an AIS2+ injured occupant 
were then described in terms of the deformation pattern, 90% cumulative delta velocity, and injured occupant position. 
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Table 1. 

Investigated ADAS, description and its effectiveness 

ADAS ADAS description 
Effectiveness 
from literature 

Lane Keep 
Assist (LKA) 

Detects if the vehicle is about to drift beyond the edge of the road or into 
oncoming or overtaking traffic in the adjacent lane and automatically 
steers back.  

1 - 3 % [2, 4-6] 

Lane Change 
Assist (LCA) 

Detects when a is car entering the blind spot while the driver is switching 
lanes. 

Not found 

Blind Spot 
Detection 
(BSD) 

Detects vehicles diagonally behind and to the side of the car, typically 
when the car is being overtaken by other vehicles. 

3% - 7% 
[2, 10] 

Advanced Front 
Lighting System 
(AFLS) 

Includes special auxiliary optical systems within the vehicle's headlamp 
housings and measures steering angle and vehicle speed and swivels the 
headlamps accordingly.  

2% 
[2] 

Electronic 
Stability Control 
(ESC) 

Detects loss of steering control and automatically applies the brakes to 
help "steer" the vehicle where the driver intends to go. This ruleset was 
only applied to vehicles with model year earlier than 2010 since newer 
cars are equipped with ESC due to regulation.  

7% - 8% 
[12, 14] 

AEB Rear End Detects stationary vehicles or vehicles being approached while driving 
ahead in the same lane. The driver is warned and if does not react, braking 
is activated.  

16% - 21% 
[2-4] 

AEB Reversing Detects the presence of vehicles or obstructions behind and automatically 
initiates braking or prevents acceleration while reversing.  

0.7% - 2% 
[11,13] 

AEB Crossing Detects crossing vehicles at an intersection. The driver is warned and if 
does not react, braking is activated.  

2% - 8% 

[17-18] 
Emergency 
Steering 
(ES) 

Steering assistance upon risk of head-on accident: detects oncoming traffic 
and intervenes by steering and/or braking within the lane to prevent 
narrow overlap head-on accidents.  

Not found 

Driver initiated 
Evasive 
Steering Assist 
(ESA) 

Detects oncoming traffic and provides assistance by adding steering torque 
to support the movement of the steering wheel, swerve or evasive action 
by driver. 

Not found 

Driver 
Monitoring 
System (DMS 

Detects impaired and distracted driving and gives appropriate warning and 
takes effective action.  

Not found 

Intelligent speed 
adaption 
(ISA) 

Detects if the vehicle speed exceeds a safe or legally enforced speed. Not found 

Traffic Jam 
Assist  
(TJA) 

Detects the vehicle in front of your own vehicle and paces it to 
automatically maintain a steady following distance. In combination with 
that it also steers to stay within the lane. 

Not found 

Highway Assist 
(HA) 

Longitudinal and lateral control on divided roads.  Not found 

Alcohol 
interlock 

Prevents the driver from driving when affected by alcohol.  Not found 
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RESULTS 

The results were obtained in a three-step approach corresponding to steps three to five outlined in the method. The 
first step presents the single and combined effectiveness of each ADAS, with and without limitations, to the full 
dataset, i.e. to all single passenger vehicle and passenger vehicle to passenger vehicle accidents. It also includes a 
comparison with the effectiveness found in the literature. In the second step, groups A-D are described regarding 
accident scenario and impact direction. In the third step, group D accidents are analysed regarding deformation pattern, 
90% cumulative delta velocity, and injured occupant position. 

Ruleset verification and ADAS effectiveness in avoiding passenger vehicle accidents  
Effectiveness in avoiding single passenger vehicle and passenger vehicle to passenger vehicle accidents was calculated 
for each ADAS (Fig. 2) and, additionally, the combined ADAS effectiveness for the four combinations, the optimistic 
and conservative rulesets each with and without speed limitation, was assessed. For the optimistic ruleset without 
speed limitation the combined ADAS effectiveness was 97%. The ADASs with the greatest potential to avoid 
accidents are AEB crossing (38%), Rear End AEB (24%), Electronic Stability Control (27%) and Lane Keep Assist 
(27%) (see Fig. 2). However, it was found that the NASS CDS variables that were queried in the ruleset for the ESA 
and DMS systems included many cases with missing information about the steering before the crash and driver state 
before the crash, 35% and more than 50%, respectively, which rendered the defined rules inapplicable. This might 
lead to underestimating effectiveness of these two ADASs in our study. 

When the speed limitation was applied to the optimistic rulesets, the combined effectiveness was reduced to 88%. The 
ADASs most affected by the speed limitation were LKA, AEB reversing and TJA, which saw their effectiveness 
reduced by 40% to 70% (Fig. 2). Speed limitation was not applied to AFLS, ESC, DMS and Alcohol interlock. 

The combined effectiveness for the conservative ruleset without speed limitation was 72%, a reduction of 26% 
compared to the optimistic ruleset without speed limitation. However, the effectiveness of many of the ADASs was 
reduced by between 40% and 70%. One exception was ISA whose effectiveness was reduced by 95%, dropping from 
8% to less than 1% (Fig. 2). The reason for this substantial reduction was that skidding often occurs in combination 
with speeding, and as the conservative rule includes the limitation to not prevent the accident if skidding occurs, these 
accidents are no longer avoided. 

Finally, for the conservative ruleset with speed limitations, the combined effectiveness decreased to 51%. The ADASs 
that were most impacted by this were the same as for the optimistic ruleset, i.e. LKA, AEB reversing and TJA, and, 
in addition, AEB crossing, LCA and ESA also decreased. The effectiveness of these ADASs was reduced by between 
40% and 70% (Fig. 2). 

Compared to the reference literature, the optimistic effectiveness truly is an optimistic representation. The ADASs 
whose effectiveness in the literature reaches these levels were BSD and AEB Rear End. On the other hand, the 
conservative values were truly conservative, underpredicting effectiveness for BSD, AFLS and AEB Rear End. The 
effectiveness of LKA, ESC and AEB crossing was overpredicted even with the conservative ruleset. For AEB 
reversing, the values were in line with the literature. For LCA, Emergency steering, Evasive steering assist, DMS, 
ISA, TJA, HA and Alco interlock, no reference values were found in the literature. 
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Figure 2. ADAS effectiveness and reference values from the literature. For conservative and optimistic rulesets, 
the error bars represent the effectiveness values without speed limitation. For the Literature the error bars 
represent the upper and lower values found. 

 

Accident description  
Fig. 3 A) illustrates the breakdown of accident scenarios for group A, all passenger vehicle to passenger vehicle 
AIS2+. The top four accident scenarios are: Vehicles Turning – Turn Across Path, representing 25%; Intersection Path 
– Straight Path, 21%; Vehicle turning – Turn into path, 17%; and Same Direction – Rear End, 14%. 

Fig. 3 B) illustrates this for group B, which is the same as group A but restricted to modern cars, model year (MY) 
2007 or later. The same top four accident scenarios remain but with a small variation in percentage and order: as an 
example, Same Direction – Rear End increases to 20% and Vehicles Turning – Turn Across Path decreases to 20%. 

Fig. 3 C) illustrates this for group C, the remaining modern passenger vehicle to passenger vehicle AIS2+ accidents 
with the conservative ruleset with speed limitations. The top four accident scenarios remain the same but Same 
Direction – Rear End accidents were reduced to 14% and Intersection Paths – Straight Path and Vehicle Turning – 
Turn Across Path increased to 27% and 26%, respectively. 

Fig. 3 D) illustrates this for group D, which is as group C but with the optimistic ruleset with speed limitations. Same 
Direction – Rear End accidents are almost eliminated, and Vehicle Turning – Turn Across Path dominate the data. 
The new top four scenarios are Vehicle Turning – Turn Across Path, Vehicle Turning – Turn Into Path, Intersection 
Paths – Straight Paths and Opposite Direction Head. Together, these four accident scenarios represent 93% of all 
remaining accidents, with Vehicle Turning – Turn Across Path accounting for almost half. 
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Figure 3. Top 10 Accident scenarios for AIS2+ passenger vehicle to passenger vehicle accidents with colour 
code: Blue = Front to Front, Red = Front to Side, Green = Front to Rear, Brown = Other. A) Group A: All 
passenger vehicle to passenger vehicle AIS2+ accidents, initial population, no ADAS applied, N=2 005 362. B) 
Group B: All modern passenger vehicle to passenger vehicle AIS2+ accidents, no ADAS applied, N=215 184. 
C) Group C: Conservative residual with speed limitation of all modern passenger vehicle to passenger vehicle 
AIS2+ accidents, N=117 463. D) Group D: Optimistic residual with speed limitation of all modern passenger 
vehicle to passenger vehicle AIS2+ accidents, N=42 407. 

 

Analysis of accident type and deformation pattern of the remaining impacted vehicles  
Accident scenarios are groups of accident types (see above) and breaking down Group D (remaining accidents from 
the optimistic rule set) further into accident types reveals that four predominate: Head On (12%), Turn Across Path 
(45%), Turn Into Path Opposite Direction (15%) and Straight Crossing Path (14%). Together these four accident types 
cover almost 90% of the group D accidents, almost three-quarters of which are intersection accidents. 

Even though the intersection accidents are defined by accident type, how the vehicles actually impact each other will 
vary. To understand the deformation pattern for vehicles that had an AIS2+ injured occupant and were involved in an 
intersection accident, their CDC code was analysed and, based on their general area of deformation, they were divided 
into having frontal, left or right impacts. It was found that 54% sustained frontal impacts, 25% left impacts, and 19% 
right (Fig. 4), while 2% of these accidents were missing this type of information. The frontal, left and right cases were 
further investigated in four regards: the distribution of longitudinal or lateral location of the deformation; principal 
direction of force (PDOF); 90% cumulative delta velocity; and position of the injured occupant (Fig. 4). 

All vehicles with frontal impacts had a distributed deformation involving 75% or more of the front with PDOF of 
between 11 and 1 o’clock, with the main part, 60%, at 12 o’clock. The 90% cumulative delta velocity is 39 km/h. 76% 
of the injured occupants are drivers and 23% are front seat passengers (see Fig. 4, left). 

For the vehicles with left-side deformation, all vehicles sustained deformation to the part in front of the occupant 
compartment, i.e. the left wing, with 19% sustaining deformation to this part only. Just above half of the impacts have 
a PDOF that is perpendicular to the vehicle with the remainder being at 10 and 11 o’clock. The 90% cumulative delta 
velocity for the left-side impact is 45 km/h. 87% of the injured occupants are drivers and 5% are front seat passengers 
(see Fig. 4, mid). 

Lastly, of the vehicles with right-side impacts, almost all (97%) had an impact that involved the occupant 
compartment. Most impacts have a PDOF of 2 o’clock. The 90% cumulative delta velocity for the right-side impact 
is 33 km/h. Of the injured occupants, 92% are drivers and 6% are front seat passengers (see Fig. 4, right). 
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Figure 4. Longitudinal and lateral deformation area, PDOF, 90% cumulative delta velocity and position of the 
injured occupant. Left: Frontal impacts. Mid: Left-side impacts. Right: Right-side impacts. 

DISCUSSION 

We have presented estimates of the potential for accident reduction of current ADASs, and have included conservative 
estimates as well as future, optimistic estimates. The use of deterministic rules to create estimates for the effectiveness 
of an ADAS has a number of limitations but is straight forward, and data from the literature indicate that the calculated 
values are reasonable and sufficiently accurate for the purpose.  

Applying the ADAS rulesets to the AIS2+ passenger vehicle to passenger vehicle accidents shows that to achieve a 
major change in the accident scenarios, the optimistic ruleset needs to be applied (Fig. 3). With the conservative 
ruleset, 55% of the accidents would still have occurred, compared to only 20% for the optimistic ruleset, and there is 
no clear change in the distribution of accident scenarios. 

Factors that limit effectiveness 
One way to analyse the ADAS effectiveness findings is to figure out what the limiting factor is: the speed range 
limitation, or the conservative ruleset, in which the limitations stem from either technical limitations of the sensors or 
vehicle dynamics. It was shown that both factors have a large effect on the total number of accidents avoided, and 
even more on individual ADAS effectiveness. This indicates that using more generous speed ranges can open the way 
for improvements in effectiveness, even without technical sensor improvements. 

Single ADAS effectiveness and verification of the ADAS rulesets 
The four ADASs that address most accidents are ESC, LKA, AEB crossing and Rear End AEB, each having an 
effectiveness of 25% or above in the most optimistic calculations. ESC has been mandatory in the US since 2010 in 
passenger vehicles [39] and when comparing accidents involving passenger vehicles older than MY 2010 to those 
involving newer passenger vehicles, 25% of the older passenger vehicles are coded as skidding prior to the accident 
compared to 5% of the newer passenger vehicles. This confirms that ESC has a positive effect in reducing accidents. 
LKA in this study shows an effectiveness of between 7% and 27%. This is much higher than that reported in other 
studies, which find an effectiveness of 1% to 3% [2, 4-6]. The NASS CDS variable queried here was PREEVENT 
equals to 10, 11, 12 and 13, which states whether the initial critical pre-crash event was that the passenger vehicle 
crossed a line (road lane marking) or ran off the road. This seems to be too optimistic a way to simulate LKA, given 
the findings from previous research, or, alternatively, could be seen as indicating potential for improvement. AEB 
crossing also gives very optimistic results unless the conservative ruleset with speed limitation is applied, which 
reduces its effectiveness to a level comparable with findings from the literature. This indicates potential in allowing 
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higher speeds for the AEB crossing. The Rear End AEB gave a result that is directly comparable with the literature 
with an effectiveness of between 12% and 24%. However, for many of the ADASs there were no references found in 
the literature and it is therefore hard to evaluate whether a method with a deterministic ruleset is sufficiently accurate. 

Need for a new assessment crash test? 
When looking at the remaining intersection accidents, and comparing the observed deformation patterns with 
regulation and consumer ratings [40-41], we see that the full frontal and side impact conditions are well covered by 
existing crash tests. It is also noteworthy that angled right-side impacts with the driver getting injured represent 17% 
of the remaining cases, which is a similar impact condition to that of the upcoming Euro NCAP far side crash test 
[42].  

However, it is important to note that both front and side impacts occur at speeds well below the current regulatory and 
rating speeds yet still generate AIS2+ injuries in the remaining accidents. This indicates that human variations and 
sensibility to loadings are not fully covered by the current crash dummies, injury criteria and injury thresholds. The 
remaining injuries are further analysed in terms of occupant characteristics, accident type and injured body region in 
[43]. 

We also see oblique front and side impacts remaining which are not covered in current regulation and consumer crash 
tests. Evaluating these types of impacts would require vehicle dynamics that are hard to replicate in current crash test 
labs. It is also likely that current crash dummies (developed for pure frontal or side impact) will not respond in a 
biofidelic way when the load direction is not purely frontal or from the side. New ways of evaluating crashes are 
therefore required; an alternative might be to use virtual methods and human body models (HBMs). HBMs are by 
design more valid for omnidirectional loading than current crash dummies. To take this step would require the 
development of a new virtual assessment method as proposed by [44-46]. Applying these types of impact conditions 
would most likely also demonstrate a need for new and improved occupant restraints to protect the occupants. Such 
improved restraint systems are likely to include both pre-crash and in-crash activated components. For example, 
motorised belts have the potential to keep occupants in position during lateral pre-crash manoeuvres [47] and inflatable 
shoulder belts have the potential to avoid the shoulder slipping out of the belt, preventing the head and thorax from 
impacting various components of the vehicle interior [48]. 

Limitations  
The estimations were based on the NASS CDS database which contains data from accidents occurring in the United 
States. Accident distributions may therefore not be representative of other areas where the driving environment and 
vehicle fleet differ. In addition, the database may include some degree of misclassification of the key variables used, 
or omit pertinent data, or may not include sufficient details to determine the true conditions. One such variable is 
vehicle speed, which is often not reported. In this study, the speed limit of the location was used if the vehicle speed 
was not reported. This could be one reason for the relatively low level of effectiveness obtained for Intelligent Speed 
Adaptation (ISA) as the speed may, in the real event, have been higher. 

Using deterministic rulesets has some inherent limitations. In our implementation, an accident can only be prevented 
or not. In reality, accidents that are not prevented can still be mitigated. When analysing accidents with AIS2+ injuries, 
this is important because reducing the impact speed might also reduce the injury severity. This cannot be captured in 
this study.  

Another example of an inherent limitation is that an ADAS can intervene in driving through braking or steering, 
thereby affecting the trajectory of the vehicle, and in consequence may not only avoid accidents but also cause new 
types of accident or modify deformation distributions; again, this cannot be accounted for in this study. 

For some of the level 2 ADASs, drivers need to accept and use the information given by the system and respond 
appropriately. Drivers may, in fact, switch the system off, not trust it or, in a critical situation, be overwhelmed by the 
information and not take appropriate action, thus reducing the effectiveness of the ADAS from its potential [49-50]. 
This can also be seen in the literature, with retrospective analyses often giving a more conservative response than 
prospective studies. The method used here does not take into account inappropriate driver action. 

Implementation rate 
This study has assumed that all passenger vehicles in the vehicle fleet are equipped with all ADASs. In reality, it takes 
a long time for high implementation rates of a given ADAS to be attained [51]. However, the implementation rates of 
new systems might speed up in the near future through software updates during a vehicle’s lifetime. This can be done 
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if a vehicle is equipped with sensors that recognise the driving conditions and driving environment and has the 
computing power to take the sensor data and make decisions [52]. 

CONCLUSIONS 

The benefit of ADASs in reducing the number of passenger vehicle accidents is impressive. Still, even with a 100% 
implementation in passenger vehicles of the systems in use or under development today, accidents will occur. 
Occupant restraints, therefore, will still be needed to mitigate occupant’s injuries into the future. 

After applying today’s known ADASs, 15 in total, to modern passenger vehicle accidents with severe injury outcome, 
almost 90% of the remaining accidents were found to fall into four accident types: Head On, Turn Across Path, Turn 
Into Path Opposite Direction and Straight Crossing Paths. The latter three are intersection accidents and represent as 
much as three quarters of all remaining accidents. 

The detailed analysis of these remaining intersection accidents presented here indicates a need for new oblique impact 
conditions targeting lower impact speeds. These oblique impacts are a necessary complement to the existing and still 
relevant frontal and side crash tests to reduce the number of AIS2+ injuries. The impact conditions may be evaluated 
in virtual assessments with HBM and can guide the development of tomorrow’s occupant restraint systems. 

ACKNOWLEDGEMENTS 

The work was partly carried out at SAFER, the Vehicle and Traffic Safety Centre, at Chalmers, Sweden. We thank 
Vinnova, the Swedish Energy Agency, the Swedish Transport Administration and the Swedish vehicle industry for 
funding parts of this work through the strategic vehicle research and innovation (FFI) program for the project 2017-
01945 Assessment of Passenger Safety in Future Cars. We also thank Dr Helen East for her help with language 
revisions. 

 

 

REFERENCES 

[1] Traffic Safety Facts DOT HS 812 494, NHTSA 2018. 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812494 

[2] Jermakian, J. 2011. “Crash avoidance potential of four passenger vehicle technologies.” Accident Analysis 
and Prevention 43, 732–740 

[3] Cicchino, J.B. 2017. “Effectiveness of forward collision warning and autonomous emergency braking systems 
in reducing front-to-rear crash rates.” Accident Analysis and Prevention 99, 142–152 

[4] Kusano, K. and Gabler, H.C. 2015. “Comparison of Expected Crash and Injury Reduction from Production 
Forward Collision and Lane Departure Warning Systems.” Traffic Injury Prevention 16, S109–S114 

[5] Cicchino, J.B. 2017. “Effects of lane departure warning on police-reported crash rates.” Insurance Institute for 
Highway Safety 

[6] Kusano, K. and Gabler, H.C. 2014. “Potential Occupant Injury Reduction in the U.S. Vehicle Fleet for Lane 
Departure Warning–Equipped Vehicles in Single-Vehicle Crashes.” Traffic Injury Prevention 15, S157–S164 

[7] Edwards, M., Nathanson, A. and Wisch, M. 2014. “Estimate of potential benefit for Europe of fitting 
Autonomous Emergency Braking (AEB) systems for pedestrian protection to passenger cars.” Traffic injury 
prevention 15, pp.S173-82  

[8] Rosén, E. 2013. “Autonomous Emergency Braking for Vulnerable Road Users.” In Proceedings of IRCOBI 
conference. Gothenburg, Sweden, pp. 618–627.  

[9] Society of Automotive Engineers International. 2016. ”Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems.” J3016-SEP2016, 
https://www.sae.org/standards/content/j3016_201609/preview/ 

[10] Cicchino, J.B. 2017. “Effects of blind spot monitoring systems on police-reported lane-change crashes.” 
Insurance Institute for Highway Safety 



Östling 13 

 

[11] Cicchino, J.B. 2017. “Effects of rearview cameras and rear parking sensors on police-reported backing 
crashes.” Traffic Injury Prevention 18:8, 859-865. 

[12] Dang, J.N. 2007. “Statistical Analysis of the Effectiveness of Electronic Stability Control (ESC) Systems.” 
Evaluation Division; National Center for Statistics and Analysis National Highway Traffic Safety 
Administration Washington, DC 20590. DOT HS 810 794. 

[13] Flannagan, C.A., Kiefer, R.J., Bao, S., LeBlanc, D. J. and Geisler, S.P. 2014. “Reduction of Backing Crashes 
by Production Rear Vision Camera Systems.” Journal of ergonomics S3:8 

[14] Farmer, C.M. 2004. “Effect of electronic stability control on automobile crash risk.” Traffic Injury Prevention 
5(4):317–325, doi:10.1080/15389580490896951. 

[15] Alvarez, S., Page, Y., Sander, U., Fahrenkrog, F., Helmer, T., Jung, O., Hermitte, T., Düring, M., Döring, S. 
and op den Camp, O. 2017. ”Prospective Effectiveness Assessment of Adas and Active Safety Systems Via 
Virtual Simulation: A Review of the Current Practices.” Proceedings of 25th International Technical 
Conference on the Enhanced Safety of Vehicles (ESV), Detroit, USA. 

[16] Sander, U. 2017. “Opportunities and limitations for intersection collision intervention—A study of real world 
‘left turn across path’ accidents.” Accident Analysis and Prevention 99, 342–355. 

[17] Scanlon, J.M., Sherony, R. and Gabler, H.C. 2017. “Injury mitigation estimates for an intersection driver 
assistance system in straight crossing path crashes in the United States.” Traffic Injury Prevention 18:S1, 9–17 

[18] Scanlon, J. M., Sherony, R. and Gabler, H.C. 2017. “Preliminary Effectiveness Estimates for Intersection 
Driver Assistance Systems in LTAP/OD Crashes.” Proceedings of Fourth International Symposium on Future 
Active Safety Technology: Toward zero traffic accidents (FAST-zero), Nara, Japan. 

[19] Bahouth, G.T., Murakhovsky, D., Zuhurudeen, M., Asada, H., Fukaya, T., Maeda, M., Liers, H. and Wagner, 
M. 2017. “Potential Safety Benefit of ADAS Technologies In the US and Germany.” Proceedings of Fourth 
International Symposium on Future Active Safety Technology: Toward zero traffic accidents (FAST-zero), 
Nara, Japan. 

[20] Puthan, P., Östling, M., Jeppsson, H. and Lubbe, N. 2018. ”Passive Safety Needs for Future Cars: Predicted 
Car Occupant Fatalities in the USA.” Proceedings of FISITA World Automotive Congress, Chennai, India 

[21] Lubbe, L., Jeppsson, H., Ranjbar, A., Fredriksson, J., Bärgman, J. and Östling, M. 2018. ”Predicted road 
traffic fatalities in Germany: The potential and limitations of vehicle safety technologies from passive safety 
to highly automated driving.” In Proceedings of IRCOBI conference. Athena, Greece. 

[22] Strandroth, J., Sternlund, S., Tingvall, C., Johansson, R. Rizzi, M. and Kullgren, A. 2012. ”A new method to 
evaluate future impact of vehicle safety technology in Sweden” Stapp Car Crash Journal, Vol. 56, October, 
pp. 497-509 

[23] Strandroth, J. 2015. “Validation of a method to evaluate future impact of road safety interventions, a 
comparison between fatal passenger car crashes in Sweden 2000 and 2010.” Accident Analysis and 
Prevention 76. 133–140 

[24] U.S. Department of Transportation National Highway Traffic Safety Administration. 2015. “National 
Automotive Sampling System — Crashworthiness Data System 2014 Coding and Editing Manual.” DOT HS 
812 195 

[25] SAE J224: Collision Deformation Classification. 2011. SAE International, reaffirmed 2011-05-18, Detroit 
USA. 

[26] National Center for Statistics and Analysis National Highway Traffic Safety Administration. 2012. National 
Automotive Sampling System (NASS), Washington 

[27] Kononen, D.W., Flannagan, C.A.C., and Wang, S.C. 2011. “Identification and validation of a logistic 
regression model for predicting serious injuries associated with motor vehicle crashes.” Accident Analysis and 
Prevention 43(1):112–122, doi:10.1016/j.aap.2010.07.018. 

[28] Depth-sensing imaging system can peer through fog http://news.mit.edu/2018/depth-sensing-imaging-system-
can-peer-through-fog-0321 

[29] European New Car Assessment Program (Euro NCAP) Test Protocol – Lane Support Systems Version 2.0.1 
November 2017, https://www.euroncap.com/en/for-engineers/protocols/safety-assist/ 



Östling 14 

 

[30] European New Car Assessment Program (Euro NCAP) Test Protocol – AEB systems Version 2.0.1 November 
2017, https://www.euroncap.com/en/for-engineers/protocols/safety-assist/ 

[31] Test result published at https://www.euroncap.com/en 

[32] Mercedes-Benz USA. 2016. “S-Class Operator’s Manual.” Stuttgart, Germany: Daimler AG 

[33] Volvo Car Corporation. 2017. “Volvo XC60 Owner’s Manual.” Gothenburg, Sweden 

[34] Audi. 2016. “Audi Q7 Owner’s Manual.” Germany 

[35] http://www.lexus.com/models/LS/safety 

[36] https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/propilot.html 

[37] https://www.audi-technology-portal.de/en/electrics-electronics/driver-assistant-systems/audi-q7-turn-assist 

[38] Radja, A.G. 2016. “National Automotive Sampling System – Crashworthiness Data System, 2015 Analytical 
User’s Manual.” DOT HS 812 321 

[39] FMVSS No. 126 Electronic Stability Control Systems 

[40] European New Car Assessment Program (Euro NCAP) Assessment protocol – Adult Occupant Protection, 
Version 8.0.3, October 2018. https://cdn.euroncap.com/media/41746/euro-ncap-assessment-protocol-aop-
v803.201811061520101516.pdf 

[41] National Highway Traffic Safety Administration. 2012. “Laboratory Test Procedure For New Car Assessment 
Program Frontal Impact Testing. “ 

[42] European New Car Assessment Program (Euro NCAP) Far Side Occupant Test and & Assessment Procedure 
Version 1.1, November 2018. https://cdn.euroncap.com/media/41765/euro-ncap-far-side-test-and-assessment-
protocol-v11.201811091249031149.pdf 

[43] Östling, M., Puthan, P., Jeppsson, H., Lubbe, N. and Sunnevång, C. 2018. “Future passive safety needs: 
Predicted injury patterns and possible countermeasures.” International Symposium on Sophisticated Car 
Safety Systems - airbag 2018, Mannheim, 26-28 November 2018 

[44] http://osccarproject.eu/ 

[45] https://projectvirtual.eu/ 

[46] Ratingen, v. M. 2016. “Saving Lives with Safer Cars: The Past, Present and Future of Consumer Safety 
Ratings.” In Proceedings of IRCOBI conference. Malaga Spanin. 

[47] Holt, C., Douglas, E., Graci, V., Seacrist, T., Kerrigan, J., Kent, R., Balasubramanian, S. and Arbogast, K. 
2018. “Effect of Countermeasures on Adult Kinematics during Pre‐Crash Evasive Swerving.” In Proceedings 
of IRCOBI conference. Athena, Greece. 

[48] Edwards, M.A. and Nash, C.E. 2017. “Inflatable Shoulder Belts and Inboard Upper Anchor Shoulder‐belt 
Geometry in Far‐side Oblique Impacts.” In Proceedings of IRCOBI conference. Antwerp, Belgium. 

[49] Kidd, D.G., Cicchino, J.B., Reagan, I.J., and Kerfoot, L.B. 2017. “ Driver trust in five driver assistance 
technologies following real-world use in four production vehicles”. Traffic Injury Prevention, 18:sup1, S44-
S50, DOI: 10.1080/15389588.2017.1297532 

[50] Reagan, I.J. and McCartt, A.T. 2016. “Observed activation status of lane departure warning and forward 
collision warning of Honda vehicles at dealership service centers.” Traffic injury prevention, 17, No 8, 827-
832 

[51] Highway Loss Data Institute. 2017. “Predicted availability and fitment of safety features on registered 
vehicles.” IIHS Bulletin Vol. 34, No. 28, September  

[52] Automotiv World January 2018. Special report:ADAS - a stepping stone to autonomous driving? 
https://www.automotiveworld.com/?s=ADAS+-+a+stepping+stone+to+autonomous+driving%3F 

 

  



Östling 15 

 

APPENDIX A 

Table 2. 

ADAS accident prevention conservative rulesets 

ADAS Ruleset using NASS CDS variables Ruleset in text 
LKA, Lane Keep 
Assist 
 
Typical accident 
scenarios that can be 
avoided are running 
off the road, drifting 
into oncoming vehicle 
and side swipes. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
PREEVENT == (10,11,12,13) 
LANES != 99999 
WEATHER == 0 or CLIMATE == (16,18,19) 
PREISTAB == 1 
SURCOND != (3,4) 
PREEVENT !=5 
PREEVENT != 6 
TRAVELSP>= 60 

Passenger vehicle 
 
Initial critical pre-crash event 
No missing lane marks 
No precipitation 
No skidding prior to accident 
No ice or snow on the road 
Good road condition 
No speeding 
Speed > 60 km/h 

LCA, Lane Change 
Assist 
 
Typical accident 
scenarios that can be 
avoided are side 
swipes and rear end 
accidents when 
changing lane. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
PREMOVE == 15 
LANES != 99999 
WEATHER == 0 or CLIMATE == (16,18,19) 
PREISTAB == 1 
SURCOND != (3,4) 
PREEVENT !=5 
PREEVENT ! =6 speeding 
TRAVELSP >= 60) 

Passenger vehicle 
 
Pre-event movement: Changing lane 
No missing lane marks 
No precipitation 
No skidding prior to accident 
No ice or snow on the road 
Good road condition 
No speeding 
Speed > 60 km/h 

BSD, Blind Spot 
Detection 
 
Typical accident 
scenarios that can be 
avoided are side 
swipes and rear end 
accidents when 
changing lanes or 
merging. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
PREMOVE == (15,16) 
 
WEATHER == 0 or CLIMATE == (16,18,19) 
PREISTAB = 1 
SURCOND != (3,4) 
PREEVENT != 5 
TRAVELSP >= 10 

Passenger vehicle 
 
Pre-event movement: Changing lane 
or merging accident 
No precipitation 
No skidding prior to accident 
No ice or snow on the road 
Good road condition 
Speed > 10 km/h 

AFLS, Advanced 
Front Lighting 
System 
 
Typical accident 
scenarios that can be 
avoided are running 
off roads in dark 
conditions 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
LGTCOND == 2 
ALIGNMNT == (2,3) 
WEATHER == 0 or CLIMATE == (16,18,19) 
PREISTAB == 1 
PREEVENT != 6 

Passenger vehicles 
 
Light condition equal to dark 
Curve to right or left 
No precipitation 
No skidding prior to accident 
No speeding 

ESC, Electronic 
Stability Control 
 
Typical accident 
scenarios that can be 
avoided are skidding 
accidents. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
PREISTAB == (2,3,4) 
MY =< 2010 
SURCOND ! = (3,4) 
PREEVENT != 5 
PREEVENT != 6. 

Passenger vehicles 
 
Skidding prior to accident 
Model year earlier than 2010 
No ice or snow on the road 
Good road condition 
No speeding 
 

AEB Rear End, 
Autonomous 
Emergency Braking 
Rear End 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == "R" 
 

Passenger vehicles 
 
General Area of Damage equal to rear 
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Typical accident 
scenarios that can be 
avoided are impacts 
to rear end of vehicle 
in same lane. 

GADEV2 == "F" 
 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT != 5 
PREISTAB == 1 
(TRAVELSP-TRAVELSP_OPP) <= 70 

General Area of Damage equal to 
front 
No precipitation 
No ice or snow on the road 
Good road condition 
No skidding prior to accident 
Relative speed < 70 km/h 

AEB reversing, 
Autonomous 
Emergency Braking 
Reversing 
 
Typical accident 
scenarios that can be 
avoided are impacts 
to another vehicle 
when reversing. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
ACCTYPE == (92, 93, 98, 99) 
WEATHER == 0 or CLIMATE == (16,18,19) 
TRAVELSP<= 30 

Passenger vehicles 
 
Backing accidents 
No precipitation 
Speed < 30 km/h 

AEB Crossing, 
Autonomous 
Emergency Braking 
Crossing 
 
Typical accident 
scenarios that can be 
avoided are crossing 
and turning at 
intersections. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
PREEVENT == (15,16,17,65,66,67,68) 
 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT !=5 
PREISTAB == 1 
TRAVELSP <= 30. 

Passenger vehicles 
 
Initial critical pre-accident event 
crossing scenarios 
No precipitation 
No ice or snow on the road 
Good road condition 
No skidding prior to accident 
Speed < 30 km/h 

Emergency Steering 
(ES) upon risk of 
head-on accident 
 
Typical accident 
scenarios that can be 
avoided are head on 
scenarios where the 
driver is not 
performing any 
maneuverer. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == "F" ? 
 
SHL == (“L”,”R”) 
 
 
MANEUVER != (6-9,11,12) 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT != 5 
PREISTAB == 1 
TRAVELSP <= 100 & TRAVELSP >= 40 

Passenger vehicles 
 
General Area of Damage equal to 
front 
Specific longitudinal or lateral 
deformation location equals to left or 
right 
Driver is not initiating a maneuverer 
No precipitation 
No ice or snow on the road 
Good road condition 
Not skidding prior to accident 
40km/h < Speed < 100 km/h 

Driver initiated 
Evasive steering 
assist 
 
Typical accident 
scenarios that can be 
avoided are head on 
scenarios where the 
driver is not steering 
enough to avoid the 
accident. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == "F" 
 
MANEUVER == (6-9,11,12 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT != 5 
PREISTAB == 1 
TRAVELSP <= 70 & TRAVELSP >= 20 

Passenger vehicles 
 
General Area of Damage first vehicle 
equal to front 
Driver is initiating a manoeuvre 
No precipitation 
No ice or snow on the road 
Good road condition 
No skidding prior to accident 
20km/h < Speed < 70 km/h 

DMS, Driver 
drowsiness/distraction 
monitoring 
 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
DRIVDIST == 11 
PREEVENT ! = 6 

Passenger vehicles 
 
Driver sleepy 
No speeding 
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All types of accidents 
where driver is 
distracted can be 
addressed. 
ISA, Intelligent Speed 
Adaptation 
 
Accidents where the 
cause is speeding can 
be addressed 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
PREEVENT == 6 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT !=5 
PREISTAB == 1 

Passenger vehicles 
 
Speeding accident 
No precipitation 
No ice or snow on the road 
Good road condition 
No skidding prior to accident 

TJA, Traffic jam 
assist 
 
Typical accident 
scenarios that can be 
avoided are low speed 
side swipes and rear 
end impacts. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == ("F", "L", "R") 
 
TRAFFLOW == (1, 2, 3) 
RELINTER == (0, 3) 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT != 5 
PREISTAB == 1 
TRAVELSP <= 65 

Passenger vehicles 
 
General Area of Damage first vehicle 
equal to front, left or right 
Divided road with and without barrier 
Traffic way not related to junction 
No precipitation 
No ice or snow on the road 
Good road condition 
No skidding prior to accident 
Speed < 65 km/h 

HA, Highway Assist 
 
Typical accident 
scenarios that can be 
avoided are high 
speed side swipes and 
rear end impacts on 
highways. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == ("F", "L", "R") 
 
SPLIMIT > 50mph (80km/h) 
RELINTER == (0, 3) 
TRAFFLOW== (1,2,3) 
WEATHER == 0 or CLIMATE == (16,18,19) 
SURCOND != (3,4) 
PREEVENT !=5 
PREISTAB == 1 
PREEVENT != 6 
TRAVELSP >= 80 

Passenger vehicles 
 
General Area of Damage first vehicle 
equal to front, left or right 
Speed limit > 50 mph 
Traffic way not related to junction 
Divided road with or without barrier 
No precipitation 
No ice or snow on the road 
Good road condition 
No skidding prior to accident 
No speeding 
Speed > 80 km/h 

Alcohol interlock 
 
Prevents the driver 
from driving when 
affected by alcohol. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
DRINKING == 1 
ALCTEST > 8 & ALCTEST< 200 

Passenger vehicles 
 
Police reported alcohol presence 
Alcohol test result 

 

 

 

  



Östling 18 

 

 

APPENDIX B 

Table 3. 

ADAS accident prevention optimistic rulesets 

ADAS Ruleset using NASS CDS variables Ruleset in text 
LKA, Lane Keep 
Assist 
 
Typical accident 
scenarios that can be 
avoided are running 
off the road, drifting 
into oncoming vehicle 
and side swipes. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
PREEVENT == (10,11,12,13) 
 TRAVELSP>= 60 

Passenger vehicle 
 
Initial critical pre-crash event 
Speed > 60 km/h 

LCA, Lane Change 
Assist 
 
Typical accident 
scenarios that can be 
avoided are side 
swipes and rear end 
accidents when 
changing lane. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
PREMOVE == 15 
TRAVELSP >= 60) 

Passenger vehicle 
 
Pre-event movement Changing lane  
Speed > 60 km/h 

BSD, Blind Spot 
Detection 
 
Typical accident 
scenarios that can be 
avoided are side 
swipes and rear end 
accidents when 
changing lanes or 
merging. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
PREMOVE == (15,16) 
 
TRAVELSP >= 10 

Passenger vehicle 
 
Pre-event movement Changing lane 
change or merging accident 
Speed > 10 km/h 

AFLS, Advanced 
Front Lighting 
System 
 
Typical accident 
scenarios that can be 
avoided are running 
off roads in dark 
conditions 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
LGTCOND == 2 
ALIGNMNT == (2,3) 

Passenger vehicles 
 
Light condition equal to dark 
Curve to right or left 

ESC, Electronic 
Stability Control 
 
Typical accident 
scenarios that can be 
avoided are skidding 
accidents. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
PREISTAB == (2,3,4) 
MY =< 2010 

Passenger vehicles 
 
Skidding prior to accident 
Model year earlier than 2010 

AEB Rear End, 
Autonomous 
  
Emergency Braking 
Rear End 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == "R" 
 
GADEV2 == "F" 

Passenger vehicles 
 
General Area of Damage equal to 
rear 
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Typical accident 
scenarios that can be 
avoided are impacts 
to rear end of vehicle 
in same lane. 

 
(TRAVELSP-TRAVELSP_OPP) <= 100 

General Area of Damage equal to 
front 
Relative speed < 100 km/h 

AEB reversing, 
Autonomous 
Emergency Braking 
Reversing 
 
Typical accident 
scenarios that can be 
avoided are impacts 
to another vehicle 
when reversing. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
ACCTYPE == (92, 93, 98, 99) 
TRAVELSP<= 30 

Passenger vehicles 
 
Backing accidents 
Speed < 30 km/h 

AEB Crossing, 
Autonomous 
Emergency Braking 
Crossing 
 
Typical accident 
scenarios that can be 
avoided are crossing 
and turning at 
intersections. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
PREEVENT == (15,16,17,65,66,67,68) 
 
TRAVELSP <= 60 

Passenger vehicles 
 
Initial critical pre-accident event 
crossing scenarios 
Speed < 60 km/h 

Emergency Steering 
(ES) upon risk of 
head-on accident 
 
Typical accident 
scenarios that can be 
avoided are head on 
scenarios where the 
driver is not 
performing any 
maneuverer. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
GADEV1 == "F" ?  
 
SHL == (“L”,”R”) 
 
 
MANEUVER != (6-9,11,12) 
TRAVELSP <= 140 & TRAVELSP >= 40 

Passenger vehicles 
 
General Area of Damage equal to 
front 
Specific longitudinal or lateral 
deformation location equals to left 
or right 
Driver is not initiating a manoeuvre 
40km/h < Speed < 140 km/h 

Driver initiated 
Evasive steering 
assist 
 
Typical accident 
scenarios that can be 
avoided are head on 
scenarios where the 
driver is not steering 
enough to avoid the 
accident. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
GADEV1 == "F"  
 
MANEUVER == (6-9,11,12 
TRAVELSP <= 100 & TRAVELSP >= 20 

Passenger vehicles 
 
General Area of Damage first 
vehicle equal to front 
Driver is initiating a manoeuvre 
20km/h < Speed < 100 km/h 

DMS, Driver 
drowsiness/distraction 
monitoring 
 
All types of accidents 
where driver is 
distracted can be 
addressed. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
DRIVDIST == 3-8,11,12,13 

Passenger vehicles 
 
Driver distraction 
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ISA, Intelligent Speed 
Adaptation 
 
Accidents where the 
cause is speeding can 
be addressed 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
PREEVENT == 6 

Passenger vehicles 
 
Speeding accident 

TJA, Traffic jam 
assist 
 
Typical accident 
scenarios that can be 
avoided are low speed 
side swipes and rear 
end impacts. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck") 
GADEV1 == ("F", "L", "R") 
 
TRAFFLOW == (1, 2, 3) 
 
RELINTER == (0, 3) 
TRAVELSP <= 65 

Passenger vehicles 
 
General Area of Damage first 
vehicle equal to front, left or right 
Divided road with and without 
barrier 
Traffic way not related to junction 
Speed < 65 km/h 

HA, Highway Assist 
 
Typical accident 
scenarios that can be 
avoided are high 
speed side swipes and 
rear end impacts on 
highways. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
GADEV1 == ("F", "L", "R") 
 
SPLIMIT > 50mph (80km/h)  
RELINTER == (0, 3) 
TRAFFLOW== (1,2,3) 
TRAVELSP >= 80 

Passenger vehicles 
 
General Area of Damage first 
vehicle equal to front, left or right 
Speed limit > 50 mph 
Traffic way not related to junction 
Divided road with or without barrier 
Speed > 80 km/h 

Alcohol interlock 
 
Prevents the driver 
from driving when 
affected by alcohol. 

BODYTYPE == 
("Cars","SUV","Van","Pickup_Truck")  
DRINKING == 1  
ALCTEST > 8 & ALCTEST< 200 

Passenger vehicles 
 
Police reported alcohol presence 
Alcohol test result 
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ABSTRACT 

 

One of the major challenges for enabling market introduction of automated driving is to identify risks and benefits 

of these functions. For this purpose, a new framework for assessing the safety impact of automated driving 

functions (ADFs) has been investigated. This framework is based on accident- and field operational test- (FOT-) 

data while using simulations for assessment of ADFs with respect to a certain baseline. According to the German 

Ethics Commission for Automated and Connected Driving, this baseline has to be human manual driver 

performance. For modelling of this baseline in simulations, so-called driver performance models are introduced 

in this publication and incorporated in an overall framework for effectiveness assessment. 

 

The main idea of the developed framework is that the types of driving scenarios, respectively physical accident 

constellations, do not change with automated driving. However, since ADFs are continuously controlling the 

behavior of the vehicle, it is possible that ADFs will get involved less frequently in accident scenarios playing a 

major role at human driving, e.g. rear-end accident scenarios. On the other hand, it is likely that other previously 

irrelevant accident types will rise. Consequently, the frequency of occurrence and the severity of the addressed 

driving scenarios may change with automated driving although the types of driving scenarios stay the same. To 

investigate the change of severity in a driving scenario, accident re-simulations are used. The changes in frequency 

of occurrence of driving scenarios are analyzed by using traffic simulations. In this work, so-called driver 

performance models are introduced for modelling human baseline in accident re-simulations. Key findings 

concerning the structure of these driver performance models are presented.  

 

The developed method and models are applied on two generic ADFs, a generic “Motorway-Chauffeur” (SAE 

level 3) and a generic “Urban Robot-Taxi” (SAE level 4). The results indicate that, e.g. a Motorway-Chauffeur at 

a market penetration of 50 % has a potential for reducing about 31 % of all accidents on German motorways 

resulting in personal injury. This equals 2 % of all accidents on German roads. 
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INTRODUCTION 

 

In the last decade various automotive functions for supporting the driver have been developed. These so-called 

advanced driver assistance systems (ADAS) are supporting the driver on different levels of the driving task. 

Driven by recent developments in algorithms for environment perception and decision making, the ultimate goal 

of vehicle automation seems to be a solvable task as shown by several demonstrations [1].  

 

However, due to an increasing complexity of decision making algorithms of these complex functions, identifying 

benefits and drawbacks will be challenging. Hence, new safety effectiveness assessment methods have to be 

designed which are based on detailed accident-, FOT- and simulation data and that are assessing the ADFs with 

respect to a certain baseline. Since automated driving will not be able to avoid all accidents on roads, e.g. due to 

the misbehavior of other traffic participants and physical limits, a baseline for assessment has to be defined. 

According to the German Ethics Commission for Automated and Connected Driving,  

“[..] the licensing of automated systems is not justifiable unless it promises to produce at least a 

diminution in harm compared with human driving, in other words a positive balance of risks [..]” [2] 

Consequently, the reference for safety impact assessment needs to be human driver performance. In order to assess 

ADFs with respect to human driver performance, this paper introduces a method for safety effectiveness 

assessment. The basic idea of this framework is that the types of accident constellations and thus driving scenarios 

do not change with automated driving. However, the severity and frequency of occurrence of these driving 

scenarios may change with automated driving.  

 

BACKGROUND 

 

For effectiveness assessment of (advanced) driver assistance systems with environment perception, many different 

methods have been used in the past. All these methods have in common, that they compare driving situations 

without the system with driving situations, in which the system is activated. One valid approach for determining 

the effectiveness of ADAS is the accident re-simulation on basis of in-depth accident data, e.g. as applied in [3]. 

In this case, reconstructed accident scenarios from detailed accident data, such as the German-in-depth accident 

database (GIDAS) [4], are simulated with and without the considered function. The difference in performance in 

the situation, e.g. probability of severe injuries, is considered as the benefit of the function. An alternative to re-

simulation of single accident situations is provided by stochastic approaches describing the situational variables 

of a driving scenario by Monte Carlo sampling of synthetic driving situations from probability distributions as 

presented in [5]. A disadvantage of accident re-simulations is that new induced driving scenarios by automated 

driving cannot be considered, because these are not represented in the accident data. Another approach for safety 

impact assessment based on recorded data is the field operational test (FOT) as presented in [5]. Here, huge 

amounts of driving data without function (control condition) and with activated function (experimental condition) 

are collected. The effectiveness of the considered function is analyzed by investigating the change in frequency 

of occurrence of incidents and near-crashes compared to the baseline. For effectiveness assessment of a function 

in defined situations, driving simulator studies can be used as well. This approach allows a detailed investigation 

of human driver performance with and without the considered function as demonstrated in [6], but requires a 

selection of situation parameters to be presented to the drivers. As described previously, ADFs need to be assessed 

in the whole entity of possible driving situations in their operational design domain. Hence, simulations of these 

functions in the whole traffic are a promising approach as presented in [7]. However, validation of these 

simulations remains challenging because of the variety and complexity of models necessary for safety impact 

assessment.  

Based on the available methods presented previously, a suitable method for assessing the effectiveness of road 

vehicle automation is defined. Although accident re-simulation based on detailed accident data is a valid approach, 

it will not be suitable for assessing ADFs since this approach is based on previously recorded detailed accident 

data from human driving. In order to identify new driving situations induced by ADFs, a FOT would be suitable. 

However, considering the necessary resources difficult to realize. Thus, a holistic approach including accident re-

simulations for investigation of changes in severity and traffic simulations for assessing changes in frequency of 

driving scenarios is developed for effectiveness assessment of ADFs. 

 

FRAMEWORK FOR EFFECTIVENESS ASSESSMENT 

 

Built on previously recorded accident- and FOT-data and extended by simulation data, the effectiveness of a 

defined ADF is assessed by considering the changes in severity and frequency of addressed driving scenarios, see 

Figure 1. Based on a definition of the ADF and the addressed driving scenarios the effectiveness fields – all 
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addressed accidents and relevant driving situations – are identified in the input data. To this end, the absolute 

number of accidents per driving scenario is extracted form accident statistics for upscaling. By this, the results 

derived from detailed data can be projected upon the effectiveness on a national level. The parameters spaces (e.g. 

probability density function of velocity of involved traffic participants) are extracted from in-depth accident- and 

FOT-data for determination of the changes in severity of driving scenarios due to the function. 

 

 

Figure 1. Framework for Effectiveness Assessment of Road Vehicle Automation.  

 

Afterwards, the changes in frequencies of occurrence of the defined driving scenarios are assessed by using traffic 

simulations. Here, so-called driver error models are used to model critical driving situations in traffic simulations. 

To identify the changes in severity in the defined driving scenarios, these are simulated with and without ADF 

while the reference performance is modelled by human driver performance models. The effectiveness 𝐸 of an 

ADF in terms of safety can be derived based on a consideration of the accident risk 𝑅𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 by the severity 

𝐼𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and the frequency of occurrence 𝑓𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜  for each driving scenario. 

𝑅𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝐼𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ⋅ 𝑓𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜  

The effectiveness 𝐸 in a scenario 𝑖 is defined as the difference of risks Δ𝑅𝑖. 

𝐸𝑖 = Δ𝑅𝑖 = 𝑅𝐴𝐷𝐹,𝑖 − 𝑅𝐻𝑢𝑚𝑎𝑛,𝑖 

Substituting the risk 𝑅𝑖 by severity 𝐼𝑖  and frequency 𝑓𝑖 results in:  

𝐸𝑖 = 𝐼𝐴𝐷𝐹,𝑖 ⋅ 𝑓𝐴𝐷𝐹,𝑖 − 𝐼𝐻𝑢𝑚𝑎𝑛,𝑖 ⋅ 𝑓𝐻𝑢𝑚𝑎𝑛,𝑖 

With the change in severity Δ𝐼 =  𝐼𝐴𝐷𝐹 𝐼𝐻𝑢𝑚𝑎𝑛⁄  and the change in frequency of occurrence Δ𝑓 =  𝑓𝐴𝐷𝐹 𝑓𝐻𝑢𝑚𝑎𝑛⁄ , 

the effectiveness 𝐸 is derived for all scenarios 𝑛 by: 

𝐸 =∑𝐼𝐻𝑢𝑚𝑎𝑛,𝑖 ⋅ 𝑓𝐻𝑢𝑚𝑎𝑛,𝑖  (Δ𝐼𝑖  ⋅  Δ𝑓𝑖 − 1 )

𝑛

𝑖=1

 

 

Definition of Driving Scenarios based on Accident Type Catalogue 

 

The developed framework assumes that the defined driving scenarios cover all physical possible accidents 

constellations. For this purpose, the driving scenarios are derived from the German accident type catalogue [9] 

that includes a classification scheme for all accidents by a three-digit code built upon decades of experience by 

the German police. In consequence, almost all accident constellations that are physical possible are included in 

this catalogue. The considered driving scenarios are derived from this catalogue by assigning each three-digit 

accident types 𝑈𝑇𝑌𝑃3 to a driving scenario. This process is illustrated on the example of a “cut-in” driving 

scenario in Figure 2. 
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Figure 2. Derivation of driving scenarios based on three-digit accident classification on the example of a “cut-

in” driving scenario.  

 

Description of Automated Driving Function 

 

The previously derived driving scenarios are used to describe the functional scope of the assessed ADF. In this 

sense, to describe an Urban Robot-Taxi, only driving scenarios on urban roads within the operational design 

domain of the Urban Robot-Taxi will be linked to the function. In addition, functional limitations, e.g. due to 

environmental conditions (fog, heavy rain, snow) are included in the description of the ADF and can be used to 

limit the addressed accidents. An exemplary description of an Urban Robot-Taxi is given in Table 1.  

 

Table 1. 

Description of automated driving functions and their operational design domain (ODD) on the example of 

the Urban Robot-Taxi. 

Parameter Value 

Name Urban Robot-Taxi 

Level of automation 

according to [SAE16] 
4 

Sensor view range 

 

Adressed driving 

scenarios 

 Driving without influence from 

leading vehicle 

 Approaching static object 

 Approaching leading vehicle 

 Approaching lateral moving object 

 Approaching traffic jam 

 Cut-in 

 Lane change  

 Turning 

 Crossing 

 U-Turn 

Road types and speed 

range 
 Inside city-limits: 0 - 50 km/h 

Functional limitations  None 

 

Driving Scenario-based Identification of Effectiveness Fields 

 

After describing the assessed ADFs including their applicable driving scenarios, the effectiveness fields – the 

accidents and driving situations where the ADFs have a potential impact - are estimated. For in-depth accident 

data and national accident statistics, the three-digit accident type can be used to select the driving scenarios. FOT-

646 - Overtaking

631 – Braking right

Accident classificationby three-

digit accident type
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Overtaking on 

carriageway

250 m100 m

30 80 
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60 

60 
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80 
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Driving direction
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data is not labelled with a three-digit accident type as it contains time series data. To cluster FOT-data, the driving 

scenario classification algorithms based on machine learning introduced in [9] can be used. Here, the relative 

motion included in the three-digit accident type is used to detect the driving scenarios in time series data.  

The effectiveness fields can be limited regarding road types and limitations of the ADFs. The classification of 

driving scenarios results in a number of accidents per driving scenario (see Figure 4) that enables to investigate 

the change in frequency of the driving scenarios as well as the parameter spaces necessary to determine the change 

in severity per driving scenario (see Figure 5). Figure 3 illustrates the whole definition process of a driving 

scenario-based estimation of the effectiveness fields exemplified for a “cut-in” driving scenario.  

 

Figure 3. Process for driving scenario-based estimation of effectiveness fields due to methodical constraints 

and description of the ADF. The effectiveness fields include the number of accidents as well as the parameter 

spaces per driving scenario. 

 

For example, from all accidents with personal injuries A(P) occurring within city limits in Germany (70 % of all 

accidents), an Urban Robot-Taxi is addressing 66 %. The other accidents in the domain cannot be addressed due 

to the reason that driving scenarios are not covered by the functional scope of the automated driving function 

(14 %), driver and vehicle related limits such as technical failures or alcohol use (3 %) and no car involvement in 

the accident (17 %), see Figure 4.  

 

 
Figure 4. Numbers of addressed accidents resulting from effectiveness field of Urban Robot-Taxi in German 

national accident statistics DESTATIS. 

 

Next to the number of accidents resulting from the effectiveness fields, the parameter spaces describing the driving 

scenarios for estimation of the changes in severity are extracted from FOT- and in-depth accident data. The 
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parameter spaces are represented as Kernel Density Estimation (KDE) obtained from the probability density 

functions of situational variables of in-depth accident data and FOT-data. Using Monte-Carlo sampling techniques 

according to [11], concrete scenarios that can be simulated are randomly “drawn” from the logical scenarios. 

Exemplary parameter spaces of situational variables such as “ego velocity” describing the logical scenario “cut-

in” are presented in Figure 5.  

 

Figure 5. Parameter spaces for describing the logical scenario “cut.in” for estimation of the changes in severity 

by simulation.  

 

Both number of accidents per driving scenario and the parameter spaces describing the driving scenario for 

simulation are used in the following to estimate the effectiveness in terms of a change in accidents per driving 

scenarios.  

 

Driver Error Models in Traffic Simulations for Changes in Frequency of Driving Scenarios 

 

Traffic simulations are used to identify the changes in frequency of occurrence Δ𝑓 of driving scenarios. For 

considering the effects within mixed traffic conditions of human driven and automated vehicles, it is distinguished 

whether a human driven or an automated vehicle has induced or “caused” a certain driving scenario. For example, 

a human driver cutting-in in front of the automated vehicle can cause a “cut-in” driving situation. In this case, the 

human driver induced the driving situation while the automated vehicle was involved in it. Based on this principle, 

a classification scheme for driving situations is introduced, see Table 2. 

Table 2. 

Types of interactions in driving scenarios in mixed-traffic conditions 

Type of interaction 
Type of vehicle driving 

scenario induced by 
Type of vehicle involved: Illustration 

HUM-HUM Human driver Human driver 
 

HUM-ADF Human driver Automated driving function 
 

ADF-HUM Automated driving function Human driver 
 

ADF-ADF Automated driving function Automated driving function 
 

 

The changes of frequencies for all four defined types of interactions are analyzed by using traffic simulation data 

of human driven and automated vehicles for several market penetration rates of automated vehicles. For traffic 

simulation, a 26 km long section of the German motorway A2 around Hanover is used, see Figure 7 (left). 

 

Modelling the behavior of human traffic participants is one of the most crucial parts in traffic simulations. 

Although a tremendous variety of driver models is available [12], [13], [14] the main purpose of these existing 

models are traffic flow investigations and not investigations related to traffic safety. The main limitation of the 

available models is that they do not require to reflect human behavior in critical and uncommon situations but that 

they have been designed to represent the trained “normal” driving behavior. Special driver models are therefore 

needed to realistically represent human driving behavior in incident situations. 

ADF

ADF

ADF

ADF
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Consequently, so-called driver error models are developed that are modelling human errors causing incident 

driving situations in traffic simulations.  

 

To model how humans induce incident situations in traffic simulations, the principles leading to human errors 

have to be incorporated in the simulation models. The existing driver models, e.g. [14], that assume an ideal 

recognition and decision of humans, are extended by probabilistic error models that represent uncertainties in 

recognition and decision. According to the findings of [15], human drivers are able to perceive Time-to-Collision 

(𝑇𝑇𝐶) and Time Headway (𝑇𝐻𝑊) to other objects in their surroundings. For example, the human eye is capable 

of perceiving the 𝑇𝑇𝐶 to an object by detecting changes in its retinal projection [15]. A similar principle is assumed 

for perceiving the 𝑇𝐻𝑊 [15]. For modelling driver errors, it is assumed that the perception of 𝑇𝑇𝐶 and 𝑇𝐻𝑊 is 

afflicted with uncertainties. Therefore, the perceived 𝑇𝑇𝐶𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑  might differ from the real 𝑇𝑇𝐶𝑟𝑒𝑎𝑙  in a driving 

situation ending up in a misjudgment of the situation by the driver that can lead to an incident situation, see 

Figure 6.  

 

 

Figure 6. Probabilistic modelling of uncertainties in recognition and decision for the induction of incident 

driving scenarios. 

 

It is assumed that these uncertainties in recognition of other traffic participants of the driving scenario are gamma 

distributed. Based on Monte-Carlo sampling [11] of the gamma probability distributions, for each explicit driving 

situation occurring in simulation uncertainties in 𝑇𝐻𝑊 and 𝑇𝑇𝐶 can be generated. While most of the sampled 

uncertainties will be few and not lead to incident situations, potential incident “cut-in” driving situations will 

occur according to the probability for high uncertainties represented in the gamma probability distributions. The 

resulting exemplary changes of frequency for an “approaching leading vehicle” driving scenario are shown in 

Figure 7 (right).  

 

  
 

Figure 7. Traffic scenario for estimation of changes in frequencies of driving scenarios (left) and change of 

frequency of “approaching leading vehicle” driving scenario (right). 
 

Driver Performance Models for Changes in Severity of Driving Scenarios 

 

If an automated vehicle gets involved in an incident driving situation, the changes in severity ΔI induced by the 

ADF are assessed. For this purpose, driving situations with explicit parameters are simulated with an ADF and 

with human driver performance models as a reference. The process is illustrated in Figure 8. The difference in 

performance between human and ADFs is defined as the change in severity. This is measured by the likelihood 

for severe injuries (MAIS2+) that is derived by injury risk curves based on the relative collision speed. The 
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parameter spaces resulting from the driving scenario-based estimation of effectiveness fields (see Figure 5) are 

used to generate concrete scenarios with explicit parameters that can be simulated. 

 

Figure 8. Simulation method for estimating the changes in severity in driving scenarios on the example of a 

“cut-in” driving scenario. 

 

For human reference performance, quantitative driver models for modelling human driving performance in 

defined driving scenarios from [16] are used. The structure of the models is split into perception, information 

processing and action. Human drivers are acting in unexpected driving situations based on their knowledge rather 

than on the actual situational variables according to [17]. Thus, human action is modelled with an initial 

feedforward impulse and a feedback control to stabilize the vehicle afterwards. The initial feedforward reaction 

is described by reaction time and -intensity and is sampled from gamma distributions representing a driver 

population. The structure of the developed driver performance models is validated based on simulator studies with 

35 test subjects [16]. Finally, the developed models are verified based on in-depth accident data for ensuring that 

they can be applied for the respective driving scenario. The structure of the models is presented in Figure 9.  

 

Figure 9. Framework for human driver performance models consisting of perception, information processing 

and action. 

 

These driver performance models are developed for all covered driving scenarios. For example, in the driving 

scenario “cut-in” the likelihood for severe injuries (MAIS2+) can be reduced by 42.3 % by the Motorway-

Chauffeur.  

 

Effectiveness of Automated Driving Function 

 

Finally, the effectiveness of the automated driving function in the effectiveness field is derived based on the 

changes in frequencies of all driving scenarios and the changes in severity in all driving scenarios. This process 

is illustrated on the example of the “cut-in” driving scenario at 50 % market penetration of the Motorway-

Chauffeur. 

 

The results of the analysis of changes in frequency of occurrence based on traffic scenario level showed a decrease 

in accidents by 28.2 %, as presented in Figure 10. According to the traffic simulation (see Section 7.3), human 

drivers induced all resulting in 71.8 % of accidents on traffic scenario level. From all accidents on traffic scenario 

level induced by human drivers, 43.5 % are with involvement of a human driver (“HUM-HUM”) while the 

remaining incidents are with involvement of an ADF (“HUM-ADF”) 
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Figure 10. Effectiveness of an ADF on traffic- and driving scenario level on the example of a “cut-in” driving 

scenario and a market penetration of 50 %. 

 

In the next step, the changes in severity on driving scenario level are analyzed. According to the results of the re-

simulation (see Section 7.4), all accidents with involvement of ADF can be reduced by 40 % to 23.4 % of 

accidents. For the case in which only human drivers were involved, the 31.2 % of accidents do not change with 

ADF. In total, from the initial 100 % of accidents, the ADFs reduces to 53.4 % of accidents which consequently 

results in an effectiveness of 46.6 % for the driving scenario “cut-in” at a market penetration rate of 50 %. 

 

RESULTS 

 

The simulation-based estimated effectiveness for the different ADFs is scaled-up on national level for the Federal 

Republic of Germany. Since the effectiveness of the ADF is determined based on detailed GIDAS accident data 

that is only available for a limited geographical region in Germany the effects have to be corrected and projected 

by using the national accident statistics. For this purpose, the correction factors per driving scenario are derived 

based on the frequency of occurrence of the defined driving scenarios in GIDAS detailed accident and national 

accident statistics by using the three-digit accident type. On basis of the Urban Robot-Taxi the results presented 

in Figure 8 will be explained. In the operation domain of the Urban Robot-Taxi 205,321 accidents with personal 

injuries occurred in 2016. Since only ADFs of passenger cars are considered, just those accidents can be addressed 

where at least one passenger car is among the first two participants of the accidents. These 36,486 accident cannot 

be addressed (see light gray area). Furthermore, 47,487 accidents per year are outside the functional limits of the 

Urban Robot-Taxi (see dark gray area) due to not addressed driving scenarios, alcohol and drug use, technical 

failures and limitations of the Urban Robot-Taxi (rain, fog, ice, construction sites).  

 

Figure 11. Effectiveness in terms of avoided accidents of Motorway-Chauffeur and Urban Robot-Taxi [18]. 
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The light blue area represents the number of accidents that are potentially addressable, but cannot be avoided 

according to the simulation results. These are for example accidents that cannot be avoided due to physical 

constraints. However, the severity of these accidents possibly can be reduced by a reduction of the collision speed. 

The dark blue area represents the number of avoided accidents. Hence, the Urban Robot-Taxi can avoid 52,517 

accidents at a market penetration of 50 %. This equals an effectiveness of 27 % of all accidents in the operation 

domain.  

 

DISCUSSION 

 

In contrast to existing approaches in literature that define driving scenarios based on ontologies created by expert 

knowledge, in this work the driving scenarios are derived from the three-digit accident type covering all potential 

physical accident constellations known to accident research for decades. A set of 13 driving scenarios has been 

identified from the accident type catalogue. The definition of the driving scenarios by the three-digit accident type 

reveals tremendous gains. Since both national accident statistics (in five German federal states) and GIDAS in 

depth accident data feature the three digit-accident type, the driving scenarios can be classified in both types of 

data. Consequently, both, the number of accidents on national level per driving scenario and the parameter spaces 

for deriving the change in severity induced by ADFs can be determined with the developed concept. The presented 

concept in this thesis limited the available number of traffic participants by a number of two that covers 90 % of 

accidents. A possible enlargement of the presented driving scenarios to cover the remaining 10 % of accidents is 

to extend the number of traffic participants per driving scenario to more than two. Beyond that, a more detailed 

clustering into more than 13 driving scenarios can be realized. However, it has to be considered that the efforts 

for assessment are increasing with the number of driving scenarios. 

 

CONCLUSIONS 

 

According to the statements in [2], automated driving functions need to show a positive risk-balance compared to 

human driving in terms of traffic safety. Therefore, a framework for effectiveness assessment of road vehicle 

automation has been introduced in this work. The basic idea of this framework is that the types of accident 

constellations and thus driving scenarios do not change with automated driving. Though, the severity and 

frequency of occurrence of these driving scenarios may change with automated driving. Traffic simulations with 

automated driving functions are investigating the changes in frequency of occurrence. For determination of the 

change in severity in relevant driving scenarios, accident re-simulations were used. After determining the 

effectiveness of the automated driving functions, they are projected and depicted over the whole territory of the 

Federal Republic of Germany. The results indicate that, e.g. a Motorway-Chauffeur at a market penetration of 

50 % has a potential for reducing about 31 % of all accidents on German motorways resulting in personal injury. 

This equals 2 % of all accidents on German roads. The Urban Robot-Taxi can avoid 27 % of all accidents with 

personal injury within city-limits at a market penetration of 50 %. This equals 17 % of all accidents on German 

roads. 
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ABSTRACT 

In 2010 Volvo cars introduced advanced driver assistance systems (ADAS) designed to detect vulnerable road users 
(VRUs) in specific conflict situations. The aim of this study was to evaluate the first generation of the optionally 
mounted Pedestrian ADAS, which covers car-to-pedestrian collisions, and Cyclist ADAS, which covers car-to-
cyclist collisions.  
Data from collisions in Sweden between passenger cars and pedestrians or cyclists were collected from 2015-2017. 
Crashes involving Volvo cars with third-party liability insurance at If P&C Insurance/Volvia were included in the 
dataset, and cars with these ADAS were compared to crashes involving cars without the systems. A total exposure 
of 490,000 insured vehicle years was used in the evaluation. 
Overall, the number of collisions for cars with the Pedestrian ADAS system was 21% less than the number for cars 
without it. When studying straight crossing path crashes only, which accounted for more than half of all car-to-
pedestrian collisions in Sweden, these were reduced by 36%. However, the results are not statistically significant 
due to the low number of crashes. For the ADAS, which covers car-to-cyclist collisions, an overview of data 
available for retrospective performance evaluation is discussed. 
One clear restriction in the evaluation of VRU ADAS at this point in time is the relatively low number of cars 
equipped with the system together with the low rates of car-to-cyclist collisions (≈ 0.0002 per insured vehicle year) 
and car-to-pedestrian collisions (≈ 0.0001 per insured vehicle year).  
This study is the first real-world evaluation of the initial generation of VRU ADAS targeting traffic situations 
relevant for these technologies. ADAS for avoiding collisions with pedestrians and cyclists have a high traffic-safety 
potential; recent and future generations of these systems, cover more conflict situations and are thus expected to 
provide increasing safety benefits. 
 

INTRODUCTION 

Globally, pedestrians and cyclists represent 26% of all road traffic deaths [1]. There is a big variation in death rates 
across regions and countries, with low- and middle-income countries the worst affected. In EU countries, 
pedestrians and cyclists comprised around 21% and 8% of all road traffic deaths, respectively, in 2015 [2]; in the US 
the corresponding numbers were 16% and 2.2%, in 2016, [3]. In Sweden, in 2017, 15% of the road fatalities were 
pedestrians and 8% were cyclists [4, 5]. In many countries, roads still lack separate lanes for cyclists and adequate 
pedestrian crossings—and motor vehicle speeds are too high [1].  
Infrastructure measures, such as the physical separation of motor-vehicle and VRU paths, have proven to be 
effective in preventing VRU crashes. The expansion of walking and cycling paths in Sweden is a good example: 
fatal pedestrian and cyclist crashes have decreased from one third of the total road-traffic fatalities in the 1970s to 
just over one fifth today [4]. Still, VRUs often share the road with motor vehicles, and crashes occur frequently—
most commonly in urban areas where walking and cycling are common modes of transport [6].  
For car-to-VRU collisions, the distribution of conflict situations in crash databases are used to identify frequent or 
severe situations to address with traffic safety measures. The majority of crashes are Straight Crossing Path (SCP) 
situations, i.e. the car is moving straight forward, and the car and the VRU are crossing each other’s paths. 
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Situations in longitudinal traffic, when the car and the VRU are traveling in the same or opposite direction while 
sharing the same roadway are not as frequent, but often with more severe injuries for the VRU. Specific situations 
for car-to-pedestrians are collisons where the car is reversing hitting a pedestrian, and for car-to-cyclists; the cyclist 
riding into a car door that was being opened by the car driver or a passenger, hereafter called dooring [7-11]. 
As unprotected road users, pedestrians and cyclists are particularly vulnerable to severe or fatal injuries in case of a 
crash. One important way to reduce the consequences of a crash is to lower the impact speed [12-14]. To improve 
the situation where vulnerable road users and motor vehicles share the road, speed limits have been reduced in 
Swedish cities over the last decade (where appropriate) [15]. Additional speed-reducing measures, such as speed 
bumps and raised crosswalks and chicanes, have been implemented to achieve better speed compliance [16]. In the 
work with the Vision Zero initiative, a key indicator measuring the share of safe walking, bike, and moped passages 
was introduced [17, 18]. 
In the last decade, vehicle manufacturers have developed countermeasures to reduce the consequences of an impact 
with VRUs. These involve redesign of the bumper area [19], the hood, windshield, and pillar [20], and introduction 
of pedestrian airbags [21], and pop-up bonnets [22]. 
One of the most promising countermeasures presented by the automotive industry is advanced driver assistance 
systems (ADAS) specifically for pedestrian and cyclist situations. One example is the collision warning with full 
autobrake and pedestrian and cyclist detection implemented in Volvo car models [23]. Real-world evaluations have 
shown that autobrake systems are very effective in avoiding (as well as mitigating) car-to-car crashes in rear-end 
situations [24-33], and test institutes and predictive studies estimate that including pedestrian and cyclist detection 
will greatly reduce crashes with VRUs [34-38]. In December 2017, HLDI examined pedestrian-related collisions 
which showed a reduction in the frequency of bodily injury (BI) liability claims, as a result of analyzing an ADAS 
with a pedestrian detection feature. [39]. 
The aim of this study was to evaluate the first generation of driver support systems which are intended to detect 
VRUs, covering car-to-pedestrian- as well as car-to-cyclist collisions, by investigating real-world crashes collected 
from traffic situations relevant for these technologies. 

DATA & METHOD  

In this study we used insurance claims data from car-to-pedestrian collisions involving Volvo models with and 
without Pedestrian ADAS (collision warning with full autobrake and pedestrian detection). Also, car-to-cyclist 
collisions involving Volvo models with and without Cyclist ADAS (collision warning with full autobrake and 
cyclist detection) was studied.  
To calculate the exposure, information covering all cars registered in Sweden with third-party liability insurance at 
If P&C insurance/Volvia was used. The analysis was performed using accident and exposure data for the years 
2015-2017.  

Data collection  
Data including both car-to-pedestrian collisions and car-to-cyclist collisions in Sweden are continuously coded and 
collected in two databases. For cars with third-party liability insurance at If P&C insurance/Volvia, all crashes 
involving cyclists and pedestrians were coded using information from the claims. This means that a representative 
set of data, ranging from very low-severity crashes to fatal crashes, is available. These data include crashes 
sometimes not collected in, e.g. the national crash databases, because they are lower in severity or simply not 
included in the collection criteria; however, even these situations can result in injuries for VRUs. Two examples 
illustrate this point: the dooring situation, (defined as a single accident in police-reported accidents in Sweden) and 
the frequent situation; car reversing hitting a pedestrian, that is not considered at all in official statistics.  
In most cases, information about the crash situation was available for both the pre-crash and crash events between 
car and pedestrian/cyclist. The pre-crash event was described by the conflict situation classification, if available, the 
driver’s estimate of the car’s speed just before the accident; and whether the driver’s view was restricted. The crash 
event was described by the point of impact and the impact direction for both the pedestrian/cyclist and the car during 
the collision. This information was obtained from the claims form and descriptions by the driver and the 
pedestrian/cyclist. To more fully describe each situation, environmental conditions (light and weather conditions and 
road status), when (time of day) and where the collision occurred (urban or rural area), and demographics about the 
driver and the pedestrian/cyclist were recorded. Personal injuries were coded using the Abbreviated Injury Scale 
(AIS) [40].  
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Exposure data 
Exposure data were calculated for the Volvo car models included in the study, by summing up the number of 
insured vehicle years (IVY): one car insured for one year is one insured vehicle year, two cars insured for half a year 
each is equal to one insured vehicle year, etc. Crashes involving cars with the optionally mounted VRU ADAS were 
identified and compared to crashes involving cars without the systems. For the Pedestrian ADAS detection system, 
the total exposure was 490,000 vehicle years and for the Cyclist ADAS detection system it was 420,000 vehicle 
years. For detailed information about the number of selected cases, see Tables 1 & 2. 

System description: Pedestrian ADAS 
The pedestrian detection technology (consisting of collision warning and autobrake system) was included in the 
third generation of Volvo Cars’ collision avoidance system, available from 2010 (MY 2011) as an option in the 
Volvo models S/V60. From MY 2012 it has been available in the V/XC70 and S80 models, and from MY 2013 in 
the V40. Models introduced from 2015 on, starting with the new XC90, are equipped with the next generation of 
collision warning and autobrake system as standard. The system uses a combination of a long-range radar and a 
forward-sensing wide-angle camera that continuously monitors the area in front of the vehicle. For best 
performance, the pedestrian detection needs a clear view of the person’s head, arms, shoulders, legs, and the upper 
and lower parts of the body—and the person should be moving normally; Figure 1. If large parts of the pedestrian’s 
body are not visible, the system cannot detect it. In the first version of the system, representing all cases included in 
the study, the capacity for detecting a pedestrian in darkness was limited, but the version introduced in 2015 
represents a great improvement. However, some contrast between the pedestrian’s silhouette and the background is 
still needed for detection. 
 
 

 

Figure 1. Examples of the clear body contours that the system regards as pedestrians, adapted from [41] 

 
The pedestrian detection system will provide a warning and brake support in some of the situations when there is a 
credible risk of an accident. If the driver does not intervene after the warning, and the collision threat becomes 
imminent, intervention braking may automatically be applied to help slow down the car. Up to a speed of 80 km/h, 
the system may autobrake for a pedestrian, and up to approximately 35 km/h the collision may be avoided 
completely. In the most recent version, the system is able to reduce speed in up to 45 km/h in some car-to-pedestrian 
critical situations. 

 

System description: Cyclist ADAS 
Cyclist ADAS was an available option in Volvo’s collision avoidance system starting in 2012 (MY 2013) in the 
S/V60, V/XC70, XC60, S80, and V40 models. Like the pedestrian ADAS, this system has been a standard feature in 
models introduced in 2015 and later, starting with the new XC90. 
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a)                                                          b)                                                          c) 

Figure 2. Examples of clear body and bicycle outlines that the system regards as cyclists, adapted from [41-42] 

For Cyclist ADAS, the technology is similar to the Pedestrian ADAS. To be able to recognize a cyclist, the system 
will optimally be able to detect clear, distinct body and bicycle outlines; Figure 2. The first version of the system 
was able to detect cyclists traveling in the same direction from behind; Figures 2.a & b. In the second generation of 
the system, introduced in 2015, cyclists can also be recognized from a side view; Figure 2c. 

 

Crash data 
Volvo car models V40, S/V/XC60, V/XC70, S80 and S/V/XC90 were selected from the car-to-pedestrian and car-
to-cyclist crash databases, starting with the date Pedestrian ADAS and cyclist ADAS respectively were available for 
these models.  
 
     Car-to-pedestrian crash data The car-to-pedestrian crash data contain 12 Pedestrian ADAS cars and 37 non-
Pedestrian ADAS cars, collected in Sweden between 2015 to 2017; Table 1.  

Of the 12 car-to-pedestrian collisions in which the car was equipped with the Pedestrian ADAS system, six were 
SCP situations (the pedestrian was crossing the road in front of the car, going straight). The other cases represent a 
variety of situations: the car turned right as the pedestrian was crossing the road, a young boy was playing beside the 
road and rolled out onto the road as the car approached, the car was going straight and the pedestrian was standing 
still beside the road, and the pedestrian ran into the side of the car; in two cases, the car drove over the pedestrian’s 
foot (one in a parking lot and one in a petrol station). In one case the car was reversing. 
For cases with information of pre-crash factors, six occurred in daylight and four in darkness. In nine cases the 
weather was clear, nine cases happened in urban areas and two in non-urban areas. There were two seriously injured 
pedestrians, the remaining ten have moderate or minor injuries.  

Of the 37 collisions with non-Pedestrian ADAS cars, 23 were SCP situations, in four cases the car was turning 
before the collision with a pedestrian crossing the road. In one case the car hit a pedestrian standing still beside the 
road. In two cases the car was moving forward in a parking lot when hitting the pedestrian, in one case the car 
skidded before hitting two pedestrians. One case occurred on a motorway in the night. In four cases the car was 
reversing.  
Of the known pre-crash factors 19 of the cases occurred in daylight, 15 in darkness. It was clear weather in 24 of the 
cases, in two it was raining. The main part, 33 of the collisions, occurred in urban areas. Four of these pedestrian 
crashes were fatal, one pedestrian had a serious injury, in 11 of the cases the pedestrian had a moderate injury and 
the rest have only minor injuries.  

     Car-to-cyclist crash data The car-to-cyclist crash data contains 27 cars with Cyclist ADAS and 56 cars without 
the system (non-Cyclist ADAS) collected in Sweden between 2015 to 2017, Table2. Of the 27 cars with Cyclist 
ADAS, only four cars had the updated version of the system where cyclists can also be recognized from a side view. 

Of the 27 collisions involving cars with the Cyclist ADAS system, there were one case where the car and the cyclist 
travelled in the same direction: the handlebar of the bicycle and the side of the car made contact. Of the remaining 
cases, 19 were SCP situations (the car was going straight when the cyclist crossed the road in front, from either the 
left or the right). Two of these cases occurred in a roundabout. In six cases, the car was turning right, and in one case 
the car was turning left, and collided with a cyclist crossing the road.  
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The majority of the cases occurred in urban areas, during daylight and in clear weather. None of the cyclists were 
seriously injured. 

Of the 56 collisions with non-Cyclist ADAS cars, three cases were same direction situations. Of these three cases 
two occurred in a roundabout; in one case the car was overtaking the cyclist the handlebar of the bicycle touched the 
side of the car, in the other case the car was running into the cyclist, diagonally when the cyclist was leaving the 
roundabout. 31 of the collisions were SCP situations, 13 were situations where the car turned left or right before 
colliding with a cyclist crossing the road. In eight cases, the car was not moving forward, in three of these cases the 
car was reversing and five cases were dooring situations. The majority of these 56 crashes occurred in urban areas, 
during daylight and in clear weather without seriously injured cyclists. 

Statistical methods 
The rate of car-to-pedestrian collisions was compared per 10,000 IVYs for cars with and without the Pedestrian 
ADAS system. 

The rate of car-to-pedestrian collisions for Pedestrian ADAS cars is defined as  

Rate   = (n   / IVY  )                      (1) 

 

where n is the number of car-to-pedestrian collisions. The number of claims can be considered using a Poisson 
distribution. Exact 95% Poisson confidence limits for the estimated rate were calculated as 

 

LCL = ,   /   ,          UCL =
( ),   /                                           (2) 

  

The rate and confidence interval of pedestrian and car crashes for non-Pedestrian ADAS cars were defined 
comparably.  

To evaluate the effectiveness of the Pedestrian ADAS technology, Poisson regression was used to compare the car-
to-pedestrian collision rates per IVY for Pedestrian ADAS and non-Pedestrian ADAS cars. The calculations were 
performed with PROC GENMOD (SAS Institute) [42], using a model with a logarithmic link function. Regression 
models were constructed for the total number of pedestrian and car collisions. Rate ratios (RRs) were provided from 
the output, together with 95% confidence limits. The system’s effectiveness (the reduction in crashes as a 
percentage) was calculated as (1 − RR) ∗ 100. 

RESULTS 

Car-to-pedestrian collisions: 
The crash database contained 12 car-to-pedestrian cases involving Pedestrian ADAS cars and 37 cases with cars 
without the system. Six of these cases where car-to-pedestrian straight crossing path (SCP) situations with 
Pedestrian ADAS cars, and 23 where cars in SCPs without the system; Table 1.  
 

Table 1.  
Number of car-to-pedestrian collisions and insured vehicle years for cars with and without the pedestrian 

detection system Pedestrian ADAS. 

  Number of collisions 
all 

Number of collisions 
SCP 

Insured vehicle years 

Pedestrian ADAS 12 6 142,627 

non-Pedestrian ADAS 37 23 347,661 
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The crash rate for car-to-pedestrian collisions per 10,000 IVYs, all conflict situations included, was 0.84 (95% 
confidence interval [CI], 0.43, 1.47) for Pedestrian ADAS cars and 1.06 (95% CI, 0.75,1.47) for non-Pedestrian 
ADAS cars. The rate was 21% lower (nonsignificant) for the Pedestrian ADAS cars (RR = 0.79, 95% CI, 0.41–
1.51).  
When only SCPs were selected, the rate per 10,000 IVYs was 0.42 (95% CI, 0.15, 0.92) for Pedestrian ADAS cars 
and 0.66 (95% CI, 0.42, 0.99) for non- Pedestrian ADAS cars. The SCP crash rate was 36% lower (nonsignificant) 
for the Pedestrian ADAS cars (RR=0.64, 95% CI, 0.26–1.57). 

 

Car-to-cyclist collisions: 
For car models XC90, S/V90 and S/V60 (introduced in 2015 and after), the system is now standard mounted with 
the second generation of the system that is able to recognize cyclists in several conflict situations, see Figure 2. The 
crash data contain 27 car-to-cyclist collisions involving Cyclist ADAS cars, of which only four have the second 
generation of the system, and 56 collisions involving non-Cyclist ADAS cars; Table 2.  
 

Table 2.  
Number of car-to-cyclist collisions and insured vehicle years for cars with and without the cyclist detection 

system Cyclist ADAS. 

  Number of collisions  
all 

Number of collisions 
same-direction 

Insured vehicle years 

Cyclist ADAS 27 1 133,916 

non-Cyclist ADAS 56 1 285,012 

 

The rate for all car-to-cyclist collision situations per 10,000 IVYs was 1.98 (95% CI, 1.58, 2.46).  

Given that the same-direction conflict situation, targeted by the first generation of the Cyclist ADAS, accounted for 
only 3 % of all car-to-cyclist crashes [10], no difference could be identified for this type of crash when cars with and 
without the Cyclist ADAS system were compared.  
 
DISCUSSION  

Predictions based on virtual simulations as well as physical testing in specific test scenarios have promised traffic 
safety improvements from VRU ADAS technologies [34-38]. The present study describes real-world follow-up 
results in car-to-pedestrian collisions, providing preliminary confirmation of these predictions.  
These results, although not significant, indicate that cars equipped with Pedestrian ADAS system reduced car-to-
pedestrian collisions by 21% when all types of conflict situations in the data were considered—and by 36% for the 
SCP situation specifically. This is in line with a predictive estimation of the system’s performance made in 2010 that 
suggested that 30% of the pedestrian crashes could be avoided, and that fatal crashes when the pedestrian is struck 
by the front of a passenger car could be reduced by 24% [34]. A similar study predicted a reduction in fatally and 
severely injured pedestrians of 40% and 27%, respectively, for a conceptual AEB system [35].  
The performance of Cyclist ADAS in car-to-cyclist collisions was not investigated, since the dataset available 
mainly covered the first generation of the system only targeting same-direction situations, (Figure 2a-b). This 
conflict situation was not frequent in the dataset analyzed, nonetheless, the Cyclist ADAS illustrates one small, but 
important, step towards car-to-cyclist crash avoidance functionalities. In the second generation of the Cyclist ADAS 
introduced in Volvo car models in 2015, cyclists can also be identified from a side view (Figure 2c). Since more 
than 40% of all car-to-cyclist collisions in Swedish data [10] are SCP situations, this second generation is expected 
to perform substantially better.  
This study is based on insurance data, covering all levels of crash severity and including situations – that are not 
always covered in other crash databases with other selection criteria [8]. In general, results from performance 
estimations depend on the methodology that was applied; how the analysis is implemented, which situations are 
considered, and the representativeness of the input data. Thus, specific numbers need to be carefully interpreted. For 
example, in this study, only situations where the car was driving forward are relevant and expected to be reduced. 
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This is exemplified by the two results presented for Pedestrian ADAS. The overall car-to-pedestrian crash potential 
consider all types of conflict situations also including crashes where the car was reversing, and taking this total 
sample into account, 21 % of car-to pedestrian collisions were reduced. On the other hand, a specific evaluation of 
the SCP situation, one of the target situations of the system, reveals a greater effect (36%), from the Pedestrian 
ADAS.  
Some limitations in this study should be mentioned. It was not possible to find any significant safety benefits 
attributable to the ADAS systems in this study. The number of cars in traffic equipped with this functionality was 
low in the first years after its introduction. Further, the accident rates of pedestrian and bicycle crashes with cars are 
relatively low in Sweden, so it takes time before there are enough data available to study. As a comparison, 
approximately 50 rear-end-frontal collisions occur per 10,000 IVYs—compared to one car-to-pedestrian and two 
car-to-cyclist collisions for the same exposure. This was obvious when the collision warning and autobrake systems 
were evaluated in 2016; there was only one crash for the cars equipped with the pedestrian detection feature, and no 
crashes for the cars equipped with cyclist detection [32]. The possibility of achieving reliable performance 
estimations will increase, since the systems are now standard features in all new Volvo models. Given the higher 
frequency of VRU crashes in other regions of the world [1], it is suggested that research on the effectiveness of 
advanced driver assistance systems also be performed in other countries. 
This study did not evaluate a mitigation effect, i.e. when the system was activated and the speed (and thus the crash 
severity) was reduced, but the crash was not completely avoided. In car-to-VRU crashes even slight reductions in 
impact speeds have a large effect on the injury outcome for pedestrians and cyclists [12], so it is therefore suggested 
that crash mitigation be included in future studies. 
In this study, we found a clear indication that the first generation of Pedestrian ADAS is effective in reducing car-to-
VRU crashes, and it was suggested that more recent generations of both Pedestrian- and Cyclist ADAS will be even 
more efficient in terms of traffic safety improvements for VRUs. Other countermeasures to reduce or mitigate car-
to-VRU injuries have been implemented, including: infrastructure measures [15, 44], consumer rating tests on 
vehicles [36, 37], protective gear for cyclists [45], and motor-vehicle measures [19-23]. All of these initiatives 
should be considered in order to maximize a long-term decrease in VRU injury rates. 
 
CONCLUSIONS 

To our knowledge, this is the first study to analyze real-world crash data in relevant situations to evaluate ADAS 
systems targeting car-to-pedestrian and –cyclist collisions. Car-to pedestrian collisions were reduced by 21% when 
all conflict situations were considered, and by 36% in the specific straight-crossing path conflict situation, for cars 
equipped with Pedestrian ADAS. For Cyclist ADAS, the target situation in the first generation of the system only 
cover a low share of car-to-cyclist collisions, and no performance estimation was made. Our results, albeit 
nonsignificant, indicate that as more data become available, further improvements are foreseen in crash reduction 
and mitigation for the vulnerable road users that share the road with motor vehicles. 
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ABSTRACT 

The prevalence of speeding in crashes is only currently reported for fatal crashes in the United States of America 
(USA) using police reports, and the prevalence reported (27%) is well below that found in a national study that 
measured travel speeds (65%). The aim of this study was to explore how event data recorder (EDR) data from the 
National Automotive Sampling System – Crashworthiness Data System (NASS-CDS) database could be used to 
estimate the prevalence of speeding in crashes in the USA. EDR files collected as part of the NASS-CDS in 2015 
were examined to determine the presence and extent of speeding, provided they met certain criteria. AIS coded 
injury data was also extracted when available to examine speeding by injury severity. 335 EDR files were identified 
as meeting the criteria. 188 of these had complete AIS coded injury information. From this sample, it was found 
61% were speeding, but this reduced to 44% if NASS-CDS weightings were applied. Speeding by more than 10 
mph was found in 26% of crashes (16% weighted). Speeding was found to increase with increasing injury severity: 
76% of MAIS 3+ crashes involved speeding, and 52% involved speeding by more than 10 mph. EDR data was 
found to be a useful source of travel speed data that may be used to examine speeding in the USA. It indicates that 
speeding is a larger problem in crashes than suggested by the current method that uses police reports. Expanding the 
sample size by using more years of data and calculating the change in impact speed and associated change in injury 
severity would allow for more robust estimates of the prevalence of speeding and its contribution to road trauma in 
the USA. 

 

INTRODUCTION 

Speed is considered to be a major factor in the frequency and severity of road crashes [1,2]. Speed limits are set with 
the intention of controlling the maximum speed at which vehicles travel. However, drivers may still travel above the 
speed limit, termed speeding. A recent large-scale speed survey conducted in the United States of America (USA) 
by the National Highway Traffic Safety Administration (NHTSA) showed that 64.8% of vehicles were speeding, 
40% speeding by more than 5 mph and 18.3% were speeding by more than 10 mph [3].  

In the USA the prevalence of speeding in crashes is currently only estimated for fatal crashes. NHTSA defines a 
crash as speeding related if “any driver in the crash was charged with a speeding-related offense or if a police officer 
indicated that racing, driving too fast for conditions, or exceeding the posted speed limit was a contributing factor in 
the crash” [4]. This definition includes what might be termed “inappropriate speed for the conditions” as well as 
traveling above the speed limit. Even so, the estimate produced by this definition is only 27%, far lower than the 
percentage of drivers that are speeding or travelling at more than 5 mph above the speed limit in the speed survey 
[3]. 

The presence of speeding by a vehicle involved in a crash is often difficult to determine. Determining the travel 
speed of a vehicle prior to a crash is a specialised discipline known as crash reconstruction which is beyond the 
scope of most crash reports prepared by police, perhaps with the exception of some fatal crashes. Traditional crash 
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reconstruction methods rely on pre-impact tyre marks to calculate speed loss prior to impact and often produce an 
underestimate of travel speed as they cannot determine speed loss prior to the start of the tyre mark. This issue is 
further exacerbated by the advent of highly effective anti-lock braking systems on vehicles.    

The advent of event data recorders (EDRs) provides a new opportunity to accurately ascertain the travel speed of 
vehicles involved in crashes and provide more accurate estimates of the prevalence of speeding in crashes of all 
severities. EDRs store a range of data from a vehicle’s sensors in the event of a crash. In many cases this includes 
pre-crash travel speed for 2.5 to 5 seconds prior to the crash, typically recorded at 2 Hz. This data has been shown to 
be highly accurate for travel speed [5]. 

This paper details a pilot study that examined how EDR data from the National Automotive Sampling System – 
Crashworthiness Data System (NASS-CDS) database could be used to estimate the prevalence of speeding in 
crashes. 

METHOD 

As part of a separate study, the EDR files collected in NASS-CDS from vehicles crashed in the USA in 2015 were 
examined to identify EDR files that fulfilled the following criteria;  

• From a striking vehicle  

• From a vehicle that was not maneuvering (e.g turning) 

• Injury severity for at least one vehicle was known 

• Crash did not involve a heavy vehicle or motorcycle 

• Crash was not a side-swipe or animal only impact 

• EDR file had recorded crash data 

• EDR file contained pre-impact speed 

• Speed limit known 

Each EDR file was individually checked to match the crash event data stored in the EDR file to the crash sampled in 
NASS-CDS by a person trained and experienced in interpreting EDR files. The travel speed was defined as the 
highest speed that the vehicle was recorded to be traveling in the pre-crash time period recorded on the EDR file. 
This travel speed was compared against the posted speed limit for that vehicle stated in the NASS-CDS database to 
determine speeding. Information on injury severity according to the maximum abbreviated injury score (MAIS) was 
also extracted from the NASS-CDS database, when available (injury information is only available for cars less than 
ten years old) 

NASS-CDS sampling has a stratified, multiphase, unequal selection probability design that deliberately oversamples 
crashes with a higher injury severity. The NASS-CDS database provides case weights that can be used to account 
for the unequal selection probability. The weights of the sample crashes varied from 4.6 to 15,112. This high degree 
of variation in the weights means that, when considering small groups of crashes, some care must be taken to ensure 
that the result is not simply an artefact of the weighting. For example, the crash with the highest weight accounted 
for 36% of the total moderate injury weights, and 31% of the total serious injury weights, as opposed to 7% of the 
total sample.  No consensus has been reached on how best to deal with this issue. The method suggested by Samaha, 
Prasad and Nix [6] of attenuating the weights to the 95% percentile value within an injury severity category was 
applied the data for this study. Weighted, weighted with attenuation, and unweighted results are shown for 
comparison. 
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RESULTS 

1077 EDR files were collected from 970 crashes as part of NASS-CDS in 2015 and a total of 335 crashes met the 
criteria. A detailed breakdown of cases excluded is shown in Table 1.  

Table 1. 
Cases excluded by criterion 

Criterion Number 
excluded 

Non-striking vehicle 244 
Vehicle maneuvering 30 
Injury severity unknown 210 
Heavy vehicle or motorcycle involved 45 
Sideswipe or animal strike 56 
EDR file contained no data 20 
EDR file did not contain speed data 27 
Speed limit unknown 3 
Total cases excluded 635 

 

Table 2 shows the percentage of vehicles speeding in the 335 crashes. The percentage reduces when the data is 
weighted according to the weights provided in the NASS-CDS database. Attenuating the weights to the 95th 
percentile increase the percentages, but they remain closer to the weighted values than the unweighted. 

Table 2. 
Prevalence of speeding by level of speeding and weighting from 2015 NASS-CDS data  

Speeding level Unweighted Weighted Weighted - Attenuated 
Number Percentage Number Percentage Number Percentage 

Total cases 335 - 219,124 - 177,243 - 
Speeding 205 61.2 95,516 43.6 92,712 52.3 
Speeding >8km/h (5mph) 131 39.1 51,333 23.4 50,159 28.3 
Speeding >16km/h (10mph) 85 25.4 34,132 15.6 32,958 18.6 

 

The percentage of vehicles speeding by crash injury severity is shown in Table 3. Only 188 of the 335 crashes had 
injury information available for all vehicles involved in the crash. When considering the unweighted results, the 
percentage of crashes involving speeding increases with increasing injury severity across all levels of speeding. 
However, the weighted results (with weighting attenuated) show a decrease in percentage of vehicles speeding for 
MAIS 2 crashes. The difference in percentage of crashes involving speeding between crash injury severity levels 
appears to increase at higher levels of speeding. 

 Table 3.  
Prevalence of speeding by level of speeding and weighting from 2015 NASS-CDS data  

Speeding level MAIS 0,1 MAIS 2 MAIS 3+ 
Unweighted Att. Weight Unweighted Att. Weight Unweighted Att. Weight 
No. % No. % No. % No. % No. % No. % 

Total 128 - 68,185 - 35 - 8,741 - 25 - 1,697  
Speeding 77 60.2 40,220 59.0 24 68.6 2,745 31.4 19 76.0 1,068 62.9 
Speeding >8km/h  52 40.6 26,145 38.3 17 48.6 2,083 23.8 16 64.0 845 49.8 
Speeding >16km/h  33 25.8 17,589 25.8 12 34.3 1,418 16.2 13 52.0 736 43.3 
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DISCUSSION 

The unweighted results for speeding (61%) are similar to the levels of speeding found in the US national speed 
survey conducted by NHTSA but are well above the current estimate of speeding in fatal crashes (27%). Once the 
results are weighted the percentage of speeding is less than found in the US national speed survey, but still well 
above the estimated level of speeding in fatal crashes. The exception to this finding is the results for speeding by 10 
mph are closer to the NHTSA speeding survey result when they are weighted. 

It would be expected that speeding would be more prevalent in higher injury severity cases as increases in speed are 
known to increase the risk of serious and fatal crashes more than for less severe crashes [1]. The findings of this 
study are therefore as expected in that regard. There were too few fatal cases to consider them separately in the 
analysis, however, fatal crashes alone would be expected to have even higher levels of speeding than MAIS 3+ 
crashes. The results therefore suggest that the current estimate of speeding in fatal crashes is a gross underestimate. 
This is despite having a broader definition that includes inappropriate speed in the estimate in addition to speeding. 
The current NHTSA estimate may only represent cases of speeding much higher than 10 mph as high levels of 
speeding may be more easily identified by police. 

The vehicles in the sample are biased towards newer vehicles, as this was required for both injury information, and 
travel speed to be present in the EDR file. It is unknown if the age of the vehicle has an influence on speeding, 
though it may be thought that older vehicles are more likely to be driven by younger drivers [7] who may be more 
prone to speeding. Young drivers have been found to be more likely to be “speeders” according to a national survey 
conducted in the USA [8]. If this is the case the results are an underestimate of speeding in the general population.  

The sample does not include heavy vehicles or motorcycles. The NHTSA travel speed survey [3] found that heavy 
vehicles have higher median speeds but lower 85% percentile speeds than passenger vehicles. Motorcycles are not 
identified separately in the NHTSA travel speed survey. Speeding, as identified by NHTSA for fatal crashes [4], is 
more common amongst motorcycles than passenger vehicles, but less common amongst heavy vehicles. While 
motorcycles represent only a small proportion of the vehicle fleet they are over-represented in serious crashes [9]. 
The limiting of the dataset to crashes involving only passenger vehicles may have resulted in a slight underestimate 
in terms of the general population, though it is also quite possible that this made no real difference to the result. 

A major limitation of this study is the sample size when breaking down the sample for further analysis. This makes 
using the NASS-CDS weights to correct for the sampling method difficult, as a small number of crashes can become 
overly influential on the weighted result. Attempts to correct for this by attenuating the results to the 95th percentile 
value within the injury severity category still yielded the odd result of MAIS2 crashes having a lower percentage of 
speeding than MAIS0 and MAIS1, and MAIS3+ crashes, as the 6 crashes with the highest weights were all not 
speeding in a sample of only 35 crashes. Future work could incorporate more years of the NASS-CDS data to 
increase the sample size and allow it to be analysed in more detail. The soon to be released Crash Investigation 
Sampling System (CISS), the successor to NASS-CDS, will provide EDR equipment to all field crash technicians 
[10] and therefore may provide more EDR data per year of data collection for future studies of this kind. 

A further limitation is that the selection criteria were designed for a separate study, and this resulted in the exclusion 
of some cases that may have been relevant to speeding. One of the selection criteria was that the vehicle had to be a 
striking vehicle, but the struck vehicle in some crashes may also choose to travel faster than the speed limit (e.g. 
when it is travelling straight through an intersection). A revised set of selection criteria specific to this type of 
analysis would increase the number of cases included per year of NASS-CDS data.   

Traveling above the speed limit is known to increase both the risk of being involved in a crash and the severity of 
the crash [1,2]. However, it should not be assumed that the elimination of speeding would result in a reduction in 
crashes that is equivalent to the percentage of vehicles speeding. Doecke and Ponte [11] conducted a preliminary 
study that estimated the contribution of speeding to road trauma by using EDR data from NASS-CDS to calculate 
the new impact speed had the vehicle not been speeding.  They applied risk curves to this new impact speed to 
determine the new injury risk and calculate the overall reductions that could be achieved by eliminating speeding. 
They found that 22% of crashes could be avoided altogether, MAIS 3+ injuries could be reduced by 62% and MAIS 
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1 and MAIS 2 crashes could be reduced by 27%. These results were based on only 59 crashes from 2013 therefore 
their results should be viewed as preliminary. Future work in this area should consider applying the method of 
Doecke and Ponte (2017) to a large sample of NASS-CDS EDR data in order to robustly estimate the contribution of 
speeding to road trauma in the USA. 

A recent National Transportation Safety Board report [12] highlighted that the key solutions to the problem of 
speeding in the USA are automated speed enforcement (ASE) and the vehicle technology intelligent speed 
adaptation (ISA), that are not currently implemented on a wide scale. This study, albeit a pilot study, adds further 
evidence of the large scale of the problem of speeding in the USA and the road safety benefits that could be gained 
by wide scale implementation of ASE and ISA. 

CONCLUSIONS 

EDR data is a useful source of travel speed data that may be used to examine speeding in the USA. It indicates that 
speeding is a larger problem in fatal crashes than suggested by the current method that uses police reports. 
Expanding the sample size by using more years of data and calculating the change in impact speed and associated 
change in injury severity would allow for more robust estimates of the prevalence of speeding and its contribution to 
road trauma in the USA. 
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ABSTRACT 

The objective of this ACEA funded study was to determine the effect of different pedestrian autonomous 
emergency braking (P-AEB) systems on the collision speeds of real world pedestrian accidents originating from 
three different accident databases. The precrash phases of real world passenger car to pedestrian frontal accidents 
from the in-depth accident databases were investigated using different pre-crash simulation tools. Collision 
parameters were compared between the original real-world cases and cases with treatment conditions. For 
treatment simulations, the car was equipped with a virtual generic P-AEB system, triggered at a time to collision 
(TTC)≤ 1 s. The range of the generic sensor was 80 m and the opening angle was varied between 60°, 90° and 
120°. For the braking system, two different brake gradients (24.5 m/s³ and 35 m/s³) were modelled with different 
decelerations of 0.8 g and 1.1 g. Accidents from the Austrian in-depth accident database CEDATU (n=50), the 
German GIDAS (n=1084) and Swedish V_PAD (n=68) were used for the baseline. The effect of using different 
data samples was compared to the effect of assuming different generic AEB system parameters. The best 
performing P-AEB system (120°, innovative brake system) avoided 42% of the CEDATU cases, while the 
baseline P-AEB system (60°, standard brake system) avoided 18%. The best performing AEB System was able 
to avoid 79.4% of the V_PAD sample. The baseline P-AEB avoided in V_PAD at least 66.2% compared to 
GIDAS with 39.5%. The lower the mean collision speed of the sample, the higher was the benefit of the P-AEB 
system, as a higher percentage of cases can be avoided. The study shows that system parameters and the 
selection of accidents can greatly affect the outcome in prospective traffic safety analyses. As a significant 
reduction of collision speeds was seen in all three data sources, the study highlights the need for a combined 
vehicle safety assessment instead of a separate evaluation of active and passive pedestrian safety measures. 
 

INTRODUCTION 

Pedestrians accounted for 21% of the total road fatalities in the European Union in 2016 [1]. Safety measures 
addressing pedestrians have not been as effective as those for car occupants. While the total number of road 
fatalities decreased by 41% in the period from 2007 and 2016, it was only reduced by 36% for pedestrians [1]. It 
is expected that active safety systems, such as pedestrian autonomous emergency braking (P-AEB) systems will 
help to avoid or mitigate pedestrian accidents. Studies agree, however, that all accidents cannot be avoided, 
which is the reason why passive safety systems will be still needed in the future [2–8]. In the Euro NCAP VRU 
assessment active and passive safety measures are evaluated separately, i.e. in a non-integrative way. However, 
active safety measures influence the boundary conditions of accidents which were not avoided by the active 
safety measure. The question is raised of what targets for passive safety measures are relevant for vehicles with 
P-AEB systems in the future.  

The present study was conducted in the framework of the project ProPose, which is funded by ACEA (European 
Automobile Manufacturers' Association) and addresses the following questions: 

1. How many real-world accidents can be avoided with P-AEB systems?  
2. Is there a need to consider an update of the speed range addressed by passive safety measures in the 

future? 
3. How does the sensor opening angle and brake characteristic affect the effectiveness of the P-AEB 

system? 
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The effect on collision speed for different crash data samples was analyzed in order to suggest input to future 
pedestrian crash test setups, relevant for the design of passive safety measures. In contrast to other studies, the 
analyses were examined by comparing results based on three different accident databases. 

METHOD 

The effectiveness of the conceptual P-AEB systems was determined by means of comparing baseline- (the crash 
situations without the AEB) with treatment (the same situations but with a concptual P-AEB system) virtual 
simulations.  
Collision parameters of the original real-world cases (w/o P-AEB) were compared to those with a conceptual P-
AEB system. The method used in this study is referred to as ‘virtual pre-crash simulation’. In the last couple of 
years this type of investigation gained importance for the evaluation of effectiveness of active safety systems [9–
14].  
To analyse the effectiveness of P-AEB systems it is crucial that the velocity-time-history is known for the entire 
duration of the pre-crash phase, where the P-AEB deploys.  

Input Data 
In this study, the pre-crash phase of real-world passenger car to pedestrian frontal collision accidents from three 
different in-depth accident databases (Table 1) were investigated using different pre-crash simulation tools. 
Within the accident databases, the reconstructed accidents including the pre-crash phase are available. In 
CEDATU (Central Database for In-Depth Accident Study) [15,16] accidents are reconstructed with the software 
PC Crash on the basis of police-, medical-, witness and court reports, photos and photogrammetric analysis of 
the accident side. In V_PAD [17] (Volvo Cars Pedestrian Accident Database), the information considered by the 
crash investigator at Volvo's Traffic Accident Research Team is compiled and the pre-crash phase is digitized in 
order to provide vehicle paths in relation to vehicle velocities and to the surroundings in a numerical time history 
data (THd) format. The GIDAS (German In-Depth Accident Study) accidents are recorded on scene and 
therefore often provide additional information [18]. Apart from regional differences, the three databases are also 
differing in terms of their case selection criteria: In CEDATU Austrian accidents with at least one injured road 
user are included, for which access to the court file is given [16]. In GIDAS accidents are selected according to a 
statistical sampling process [18] from the area around Hannover and Dresden. The V_PAD sample [17] consists 
of Swedish pedestrian accidents reported to the insurance company Volvia (IF P&C Insurances), where all new 
Volvo passenger cars in Sweden are insured for at least three years. The different inclusion criteria for the 
databases are clearly reflected in injury distributions and speed statistics, see Table 1. 
 
Table 1: Comparison of applied data sources, simulation tools and variations 

Source CEDATU GIDAS V_PAD 
Region Austria Hannover, Dresden Sweden 
Number of accidents for simulation 50 1084 68 SCP cases 
cases with MAIS 4+ (AIS98) 50 % 7 % 3 % 
cases with MAIS 3 (AIS98) 14 % 9 % 10 % 
cases with MAIS 2 (AIS98) 24 % 33 % 40 % 
cases with MAIS 1 (AIS98) 6 % 45 % 41 % 
cases with unspec. MAIS 3+ (AIS98) 6 % 6 % 4 % 
Analysed Scenarios All All SCP 
Mean initial speed [km/h] 50 (SD=22.9) 35.5 (SD=16.8) 31.5 (SD=17.1) 
Mean collision speed [km/h] 47.2 (SD=20.4) 30.7 (SD=14.6) 23.6 (SD=16.3) 
Median collision speed [km/h] 45 29.1 20 
Simulation tool X-Rate rateEFFECT VCART 
Variations Sensor 1-3; Brake 1-4 Sensor 1, Brake 1 Sensor 1-3; Brake 1-4 
 
Only vehicle-to-pedestrian accidents which comply with the following filter criteria are considered in this study: 

• the vehicle is a car or van, mass up to 3.5t, 
• the vehicle is moving forward, 
• the pedestrian was upright (not laying) prior to the impact, 
• the pedestrian was struck by a single vehicle, 
• only one pedestrian was involved in the accident, 
• the vehicle was not skidding before the crash (but braking vehicles were included), 
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• Additional filter criterion for CEDATU and GIDAS: the pedestrian was impacted by the front of the 
vehicle, 

• Additional Filter Criteria for V_PAD: the crossing path of the pedestrian was straight (SCP according to 
Figure 6 in the Appendix were considered). 

 
The conflict situations (according to the classification introduced by Lindman et al. [17], which is explained in 
detail in Figure 6 in the Appendix) covered in the CEDATU and GIDAS sample, are shown in Figure 1: In the 
majority (80%) of the CEDATU cases, the pedestrian was crossing the road while the cars were driving straight 
(SCP). In 60% of the SCP accidents the pedestrian was entering the street straight from the left (far-side) and in 
22,5% (9 cases) straight from the right side (near-side). In 20% of the CEDATU cases the pedestrian was either 
walking in the same direction (SD), oncoming direction (OD) of the, or the car was turning to the left (LT) prior 
to the impact. In the GIDAS dataset, 84% of the pedestrian were crossing the road while the cars were driving 
straight (SCP). I the remaining 9% of the GIDAS sample, the pedestrian was walking in the same direction (SD), 
oncoming direction (OD) of the car or the car was turning left (LT) or to the right (RT) prior impact. For 5%, 
another conflict situation occurred. In the V_PAD dataset, only conflict situations with a straight crossing 
pedestrian (SCP) were included. In 68% of the CEDATU and 69% of the GIDAS cases, the accident occurred on 
dry roads compared to V_PAD, where only 33.8% occurred on dry roads. 
 

 
Figure 1. Conflict situations covered in the CEDATU and GIDAS sample. For the V_PAD sample, only SCP 
crashes were considered. 

 

Virtual pre-crash simulation 
The pre-crash phases of reconstructed real-world accidents were rerun within a virtual forward simulation, where 
the vehicle follows the trajectory and the velocity profile of the reconstructed case until the system reacts. The 
baseline simulations were compared to treatment simulations, where the vehicles are virtually equipped with an 
ideal, conceptual P-AEB System having a generic sensor and various braking strategies. 
The virtual forward pre-crash simulations in this study were made using three different simulation tools: X-
RATE, rateEFFECT and VCaRT: In general, each of them operates on a time-step basis. At each time-step, the 
tool updates its information (speed, position, rotation, etc.) on dynamic objects by querying the dynamics 
simulation module. Based on that information, the sensor vision module determines which objects in the 
environment are visible. The sensor information is then forwarded to the function logic module which represents 
the P-AEB systems that are simulated by the individual tools. When the function logic module decides to 
intervene by e.g. braking, appropriate deceleration values are forwarded to the dynamics module for simulation 
of the next time step. The simulation terminates as soon as the stop criteria are fulfilled (i.e. first collision is 
detected or maximum simulation time reached). 
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X-RATE (Extended Effectiveness Rating of Advanced Assistance Systems) is developed by the Vehicle Safety 
Institute at TU Graz to simulate a variation of different sensor parameters and different active safety systems. It 
has already been used successfully for several research questions (e.g. pedestrian collision avoidance systems 
[19], collision mitigation for motorcycles at junctions [20], collision mitigation at intersections [21]) or in 
combination with traffic flow simulation [22]). X-RATE is developed in MATLAB and operates in conjunction 
with PC-Crash as driving dynamics simulation core.  
rateEFFECT is a tool developed and used by Volkswagen Group to analyse the performance of advanced driver 
assistance or safety systems in traffic scenarios and to evaluate the effectiveness of active safety systems. The 
functionality is very similar to X-RATE as the vehicle dynamics and the scenery is based on PC Crash, too. Via 
a system editor it is possible to define own active systems with predefined or self-developed function blocks. 
The system configuration generally consists of sensors, algorithms, driver models and actuators. [23,24] The 
effectiveness assessment is an important procedure during the process of function development and is used for 
internal and external research questions, latest for the accident analysis done for the effectiveness evaluation of 
the General Safety Regulation for the European Commission [12–14].  
VCaRT (Volvo Cars Research pre-crash simulation Tool) is a MATLAB tool to evaluate the potential of 
conceptual and ideal crash avoidance/mitigation ADAS. The tool main parts are simulation control, vehicle 
surrounding, virtual vehicle and collision control. The simulation control synchronizes the execution of the other 
parts, which can be configured depending on the test to be performed. Elements in the vehicle surrounding are 3-
dimensional representations of the objects. The vehicle representation is based on a point-mass-model combined 
with actuator models that constrains the response on function logic requests. Examples of parameters that can be 
varied in the sensor model are field of view, sensor position and classification time.  
 

Analysis of results 
In order to analyse the potential safety effect of the P-AEB systems, the collision speed was used. It was defined 
as the speed of the vehicle at the first time step when the pedestrian and the vehicle geometries were intersecting. 
The mean and median collision velocities as well as the standard deviations (SD) were analysed from the 
different data sets separately. The mean of the relative reduction ( _ ) of the collision speed was calculated 
according to Equation (1) as 1 minus the mean value of the case-wise ratio of the collision speed in the treatment 
simulations ( ) and the baseline simulation ( ), with  being the number of analysed 
cases.  
 

_ _ = 1 − 1	  Equation (1) 

 

Conceptual P-AEB system 
The generic sensor of the virtual P-AEB system was positioned 1.8 m behind the vehicle front. The range of the 
sensor model was set to 80 m. The opening angle of the sensor model was varied between 60° (Sensor 1), 90° 
(Sensor 2) and 120° (Sensor 3). The sensor vision was implemented by considering vision rays, also described in 
[25] and checks visibility of objects every 15 ms. The vision rays are emitted horizontally with a resolution of 
0.1°, as shown in Figure 2. Intersections of the vision rays and the pedestrian are detected at each time step. If 
the pedestrian is fully within the sensor area, this is classified and the Time to Collision (TTC) is calculated.  
The TTC is calculated by deriving a relative speed vector between the car and the pedestrian at each time step. 
The algorithm estimates how long it would take until a detected point, moving with the relative speed, contacts 
the ego-vehicle (car). The minimum time for all detected points is the estimated TTC for this time-step. 
The P-AEB is triggered, when the pedestrian is classified (i.e. visible and 100% in the sensor area) for at least 
150 ms (acquisition time) and the calculated TTC is ≤ 1 s. The car and pedestrian follow the original trajectory 
and the acceleration profiles remain unchanged until the AEB takes over.  
After getting the AEB trigger signal, a 0.2 s actuator delay is assumed (=reaction time of the brake system).  
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Figure 2. Top view of the sensor vision based on [25] 

 
As brakes are activated, the maximum realisable acceleration is build up. The build-up time depends on the 
brake gradient of the system (see Equation (2). The results for the build-up times are shown in Table 9 in the 
appendix. 
 - 	 = 	 	  Equation (2) 

 
The maximum deceleration depends on the friction coefficient which in turn depends on the road conditions. 
Different brake systems were evaluated (Table 2), which differed in terms of braking gradient and maximum 
realisable deceleration. In total four variations were investigated.  

 
Table 2.  

Definition of the braking systems for treatment simulations 

 Braking system Brake gradient  Max. realisable deceleration 
Brake 1 Standard 24.5 0.8*g 
Brake 2 Standard 24.5 1.1*g 
Brake 3 Innovative 35 0.8*g 
Brake 4 Innovative 35 1.1*g 

 
The braking profiles of the different braking strategies are shown in Figure 3. After the actuator delay, the 
deceleration increases with the defined brake gradients to the maximally feasible deceleration. 
Brake 1 and Sensor 1 as well as the applied strategy are in accordance with a previous studies [12–14]. 
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Figure 3. Braking Profile 

RESULTS 

In total, twelve treatment simulations of every baseline simulation were performed for the CEDATU and 
V_PAD sample. In GIDAS only one treatment simulation per baseline simulation (with Sensor 1 and Brake 1) 
was performed.  
The results are presented by means of the data sample in this section. Collision speeds and the share of avoided 
cases of the different treatment simulations are compared to the baseline sample. For avoided accidents the 
collision speed was set to 0 km/h, resulting in a relative reduction of 100%. Mean and Median values were 
analysed per braking system for each sensor as well as overall braking systems.  

CEDATU Cases 
The mean collision speed of the original baseline CEDATU cases was 47.2 km/h (SD=20.4 km/h) and the 
median 45 km/h. The mean collision speed over all simulated P-AEB strategies was reduced by 55% to 
24.9 km/h (SD=22 km/h). The individual results of the treatment simulations are shown in Table 3, depending on 
the sensor-opening angle and the braking system. The highest reduction of the collision speed _  (including 
avoided accidents as accidents with 0 km/h) was observed with Sensor 3 and Brake 4. The baseline collision 
speed of 47.2 km/h (SD=20.4 km/h) was reduced by 67.1% to 19.2 km/h (SD=22.7 km/h and the median from 
45 km/h to 6.7 km/h. Sensor 3 and Brake 4 avoided 21 accidents (42%). The lowest change of the collision 
speed was observed with Sensor 1 and Brake 1. The reduction was 17.8 km/h (45.5%) and 9 accidents (18%) 
were avoided. A comparison of Sensor 1 and 2 shows that the difference of the mean collision speed due to the 
increased sensor angles was 0.1 km/h. A difference of the collision speed of about 0.3 km/h was observed 
between Sensor 1 and Sensor 3. Sensor 3 avoided one additional accident compared to Sensor 1 or 2. A 
comparison of Brake 1, 2 and 3 shows that a higher maximum deceleration results in a lower collision speed than 
a larger brake gradient.  
With Brake 1 and Sensor 1 or 2, nine accidents were avoided (18%). When increasing the maximum deceleration 
to 1.1 g (Brake 2), five additional collisions were avoided (in total 28% avoided accidents). By increasing the 
brake gradient to 35 m/s³ (Brake 3), two additional accidents were avoided compared to brake 1. Combined with 
the higher maximum deceleration (Brake 4), a total number of 20 (40%) accidents were avoided.  
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Table 3.  
Results of the CEDATU treatment simulations depending on the sensor opening angle and braking strategy 

including avoided accidents as accidents with 0 km/h 

Sensor 
strategy 

Braking 
strategy 

Median  
  

[km/h] 

Mean  
 

[km/h] 

Mean reduction _   
[km/h] 

Mean rel. reduction _ _  
[%] 

Avoided cases  
 
 

Baseline  45 47.2 (SD=20.4) - - - 

Sensor 
1 

Brake 1 27.6 29.4 (SD=22.5) 17.8  45.5% 9 (18%) 
Brake 2 19.5 23.8 (SD=22.6) 23.4  56.4% 14 (28%) 
Brake 3 25.1 27.6 (SD=22.5) 19.6  50.0% 11 (22%) 
Brake 4 8.7 19.6 (SD=22.6) 27.6  64.7% 20 (40%) 
Overall 24.2 25.1 (SD=22.9) 22.1 54.1%  

Sensor 
2 

Brake 1 27.6 29.3 (SD=22.6) 17.9  45.9% 9 (18%) 
Brake 2 19.4 23.7 (SD=22.6) 23.5  56.8% 14 (28%) 
Brake 3 25.0 27.5 (SD=22.6) 19.7  50.2% 11 (22%) 
Brake 4 8.7 19.5 (SD=22.6) 27.7  65.1% 20 (40%) 
Overall 23.0 25.0 (SD=22.9) 22.2  54.5%  

Sensor 
3 

Brake 1 27.6 29.1 (SD=22.7) 18.1  47.9% 10 (20%) 
Brake 2 19.4 23.5 (SD=22.7) 23.7  58.8% 15 (30%) 
Brake 3 25 27.3 (SD=22.8) 19.9  52.2% 12 (24%) 
Brake 4 6.7 19.2 (SD=22.7) 28.0  67.1% 21 (42%) 
Overall 23.0 24.8 (SD=23.0) 22.4 56.5%  

 
In Table 4 the results of the CEDATU sample were separated between cases where the pedestrians were coming 
from the left (far side) or right side (near side).  
The mean collision speed of the 24 far side cases was 45.8 km/h (SD=16.9 km/h). The mean collision speed of 
the treatment simulations of all P-AEB systems was 23.7 km/h (SD=20.5 km/h), with a reduction of 55.7%. Due 
to the best braking strategy (Brake 4) the collision speed was reduced by 66.8% to 17.5 km/h (SD=19.8 km/h) 
compared to the least effective braking strategy (Brake 1), for which the mean collision speed was reduced to 
28.2 km/h (47.2%). In the simulations with Brake 4, twelve accidents were avoided, while six accidents were 
avoided with Brake 1. For the far side scenario, no influence of the sensor angle was observed.  
The sample comprises nine accidents from the nearside scenario with a baseline mean collision speed of 30 km/h 
(SD=13.1 km/h). The collision speed was reduced to 11.2 km/h (SD=12.3 km/h) within the simulations with 
Sensor 1 or Sensor 2, which is a reduction of 61.9%. The simulations with Sensor 3 achieved a collision speed of 
10 km/h (SD=12.8 km/), this was a reduction of 73%. With Sensor 1 or 2, at least 3 accidents were avoided 
(33%). Sensor 3 and braking system 4 was the most effective system as 5 accidents were avoided (55%) and the 
lowest mean collision speed for treatment simulations (7.2 km/h, SD=11.8 km/h) was observed.  
 

Table 4.  
CEDATU treatment simulations for far side and nearside SCP traffic simulation scenarios including avoided 

accidents as accidents with 0 km/h 

  Farside situations (n=24) Nearside situations (n=9) 

Sensor 
strategy 

Braking 
strategy 

Mean  
 

[km/h] 

_   
[km/h] 

( _ _ ) 

Avoided 
cases  

 

Mean  
 

[km/h] 

_   
[km/h] 

( _ _ ) 

Avoided 
cases  

 
Baseline  45.8 (SD=16.9) - - 30.0 (SD=13.1) - - 
Sensor 

1 
Brake 1 28.2 (SD=20.5) 17.5 (47.3%) 6 (25%) 13.0 (SD=12.7) 16.9 (56.4%) 3 (33%) 
Brake 2 22.4 (SD=20.2) 23.4 (58.6%) 8 (33%) 12.1 (SD=11.9) 17.9 (58.7%) 3 (33%) 
Brake 3 26.8 (SD=20.1) 18.9 (50.1%) 6 (25%) 11.4 (SD=12.4) 18.6 (62.6%) 3 (33%) 
Brake 4 17.5 (SD=19.8) 28.2(66.9%) 12 (50%) 8.4 (SD=11.6) 21.6 (69.9%) 4 (44.4%) 
Overall 23.7 (SD=20.5) 22.0 (55.7%) - 11.2 (SD=12.3) 18.7 (61.9%) -- 

Sensor 
2 

Brake 1 28.2 (SD=20.5) 17.5 (47.3%) 6 (25%) 13.0 (SD=12.7) 16.9 (56.4%) 3 (33%) 
Brake 2 22.4 (SD=20.2) 23.4 (58.6%) 8 (33%) 12.1 (SD=11.9) 17.9 (58.7%) 3 (33%) 
Brake 3 26.8 (SD=20.1) 18.9 (50.1%) 6 (25%) 11.4 (SD=12.4) 18.6 62.6%) 3 (33%) 
Brake 4 17.5 (SD=19.8) 28.2(66.9%) 12 (50%) 8.4 (SD=11.6) 21.6 (69.9%) 4 (44.4%) 
Overall 23.7 (SD=20.5) 22.0 (55.7%) - 11.2 (SD=12.3) 18.7 (61.9%) - 

Sensor 
3 

Brake 1 28.2 (SD=20.5) 17.5 (47.3%) 6 (25%) 11.8 (SD=13.4) 18.1 (67.5%) 4 (44.4%) 
Brake 2 22.4 (SD=20.2) 23.4 (58.6%) 8 (33%) 10.9 (SD=12.5) 19.1 (69.8%) 4 (44.4%) 
Brake 3 26.8 (SD=20.1) 18.9 (50.1%) 6 (25%) 10.2 (SD=12.9) 19.8 (73.7%) 4 (44.4%) 
Brake 4 17.5 (SD=19.8) 28.2(66.9%) 12 (50%) 7.2 (SD=11.8) 22.7 (81.0%) 5 (55.5%) 
Overall 23.7 (SD=20.5) 22.0 (55.7%) - 10.0 (SD=12.8) 19.9 (73.0%) - 
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An influence of the opening angle was observed in two simulated accident cases without sight obstructions at 
junctions (conflict situation LT/SD and SCP). The relative trajectory of the pedestrian to the vehicle is shown in 
Figure 4 with black lines. For the first accident (SCP), only the P-AEB with Sensor 3 was able to avoid the 
accident. In the second case (LT/SD), the AEB was triggered with Sensor 2 and 3 earlier. The System was able 
to reduce the collision speed by about 23.4% from 25 km/h to 19.4 km/h with the best system (Sensor 3 and 
Brake 4). In Figure 4, the relative position of the pedestrian to the vehicle is shown for 2 other CEDATU cases 
as grey line. These two cases with sight obstructions were detected for all sensor angles at the same time.  
In another 5 accidents with sight obstructions, the pedestrian was classified at the same time and no influence of 
the opening angle was observed. 
 

 
Figure 4. Trajectories of the pedestrian relative to the vehicle of CEDATU simulations for four selected cases 

GIDAS Cases 
The mean collision speed of the original GIDAS cases was 30.7 km/h (SD=14.6). Due to treatment simulations 
with Sensor 1 and Brake 1 (Table 5), the collision speed was reduced by 17.1 km/h to 13.6 km/h (SD=14.7), 
which equals a relative reduction ( _ _ ) of 57.7%. This system avoided 39.6% of 1078 cases. 
 

Table 5. 
Results of the GIDAS treatment simulations depending on the sensor opening angle and braking strategies 

including avoided accidents as accidents with 0 km/h 

Sensor 
strategy 

Braking 
strategy 

Median  
  

[km/h] 

Mean  
 

[km/h] 

Mean reduction _   
[km/h] 

Mean rel. reduction _ _  
[%] 

Avoided cases  
 
 

Baseline  29.1 30.7 (SD=14.6) - - - 
Sensor 

1 
Brake 1 11.0 13.6 (SD=14.7) 17.1 57.7% 429 (39.6%) 

 

V_PAD Cases 
The mean collision speed of the original V_PAD cases was 23.6 km/h (SD=16.3 km/h) and the median 20 km/h. 
The mean collision speed for all simulated P-AEB strategies was reduced by 70.2% to 7 km/h (SD=22 km/h).  
The treatment simulation results are shown in Table 6, depending on the sensor opening angle and the braking 
system. The highest change of collision speed _  (including avoided accidents with 0 km/h) was achieved 
with Sensor 3 and Brake 4. The baseline collision speed of 23.6 km/h (SD=16.3 km/h) was reduced to 5.8 km/h 
(SD=12.4 km/h). This represents a reduction of 17.8 km/h ( _ _ =86.6%). The lowest reduction of the 
collision speed ( _ _ =79%) was achieved with Sensor 1 and Brake 1. The effect of the different sensors 
was very small. The mean collision speeds differed by only 0.1-0.2 km/h for all brakes. The results of Sensor 2 
and 3 were equal for all brakes. The mean collision speed of Sensor 1 over all braking systems was 7.1 km/h 
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(SD=13.2 km/h). All braking systems with Sensor 2 and Sensor 3 were able to reduce the collision speed to 
7 km/h (SD=13.3 km/h).  
A comparison of the braking systems shows that Brake 4 leads to the lowest collision speed for all three 
simulated sensors. With Brake 2 and 3, differences in standard deviation and number of avoided accidents were 
observed. 
In the simulations with Sensor 1 and Brake 1 at least 45 (66.2%) accidents were avoided, while the number of 
avoided cases with Sensor 2 and 3 was at least 47 (69.1%). The best system (Sensor 3, Brake 4) avoided 54 
accidents (79.4%). 
 

Table 6. 
Results of the V_PAD treatment simulations depending on the sensor opening angle and braking strategy 

including avoided accidents as accidents with 0 km/h 

Sensor 
strategy 

Braking 
strategy 

Median  
  

[km/h] 

Mean  
 

[km/h] 

Mean reduction _   
[km/h] 

Mean rel. reduction _ _  
[%] 

Avoided cases  
 
 

Baseline  20 23.6 (SD=16.3) -  - 

Sensor 
1 

Brake 1 0 8.2 (SD=13.9) 15.4 79.0% 45 (66.2%) 
Brake 2 0 7.2 (SD=13.3) 16.4 81.1% 48 (70.6%) 
Brake 3 0 7.2 (SD=13.1) 16.4 81.4% 49 (72.1%) 
Brake 4 0 6.0 (SD=12.4) 17.7 83.7% 52 (76.5%) 
Overall 0 7.1 (SD=13.2) 16.5 81.3% - 

Sensor 
2 

Brake 1 0 8.1 (SD=14.0) 15.6 81.9% 47 (69.1%) 
Brake 2 0 7.0 (SD=13.3) 16.6 84.0% 50 (73.5%) 
Brake 3 0 7.0 (SD=13.2) 16.6 84.3% 51 (75.0%) 
Brake 4 0 5.8 (SD=12.4) 17.8 86.6% 54 (79.4%) 
Overall 0 7.0 (SD=13.3) 16.6 84.2% - 

Sensor 
3 

Brake 1 0 8.1 (SD=14.0) 15.6 81.9% 47 (69.1%) 
Brake 2 0 7.0 (SD=13.3) 16.6 84.0% 50 (73.5%) 
Brake 3 0 7.0 (SD=13.2) 16.6 84.3% 51 (75.0%) 
Brake 4 0 5.8 (SD=12.4) 17.8 86.6% 54 (79.4%) 
Overall 0 7.0 (SD=13.3) 16.6 84.2% - 

 
In Table 7 the results of the V_PAD sample were separated in far side and near side scenarios. The mean 
collision speed of the 32 far side cases was 26.8 km/h (SD=17.8 km/h). The collision speed was reduced to 
9.7 km/h (SD=15.3 km/h) with simulations of Sensor 1. The mean relative reduction ( _ _ ) was 74%. The 
simulations with Sensor 2 and 3 achieved a reduction of 80.3 % to a collision speed of 9.4 km/h 
(SD=15.4 km/h). With Sensor 1, at least 19 accidents (59.4%) were avoided. The most effective System (Sensor 
3 and Brake 4) avoided 23 (71.9%) of the 32 far side scenarios and reduced the collision speed about 18.6 km/h 
(82.6%) to 9.4 km/h (SD=15.4 km/h) 
The V_PAD sample comprises 36 nearside scenarios with a baseline collision speed of 20.9 km/h 
(SD=14 km/h). The collision speed was reduced for all 3 sensors by about 87.7% to 4.8 km/h (SD=10.6 km/h). 
Brake 1 avoided 26 (72.2%), Brake 2 28 (77.7%) and Brake 3 29 (80.5%) accidents. The best system with Brake 
4 avoided 31 of the 36 near side cases (86.1%). No influence of the sensor opening angle for the nearside 
scenario was observed.  
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Table 7. 
V_PAD treatment simulations for farside and nearside SCP traffic simulation scenarios including avoided 

accidents as accidents with 0 km/h 

  Farside scenario (n=32) Nearside scenario (n=36) 

Sensor 
strategy 

Braking 
strategy 

Mean  
 

[km/h] 

_   
[km/h] 

( _ _ ) 

Avoided 
cases  

 

Mean  
 

[km/h] 

_   
[km/h] 

( _ _ ) 

Avoided 
cases  

 
Baseline  26.8 (SD=17.8) - - 20.9 (SD=14.0) - - 
Sensor 

1 
Brake 1 10.9 (SD=15.9) 15.8 (71.7%) 19 (59.4%) 5.8 (SD=11.3) 15.1 (85.5%) 26 (72.2%) 
Brake 2 9.9 (SD=15.5) 16.8 (73.4%) 20 (62.5%) 4.8 (SD=10.3) 16.1 (87.9%) 28 (77.7%) 
Brake 3 9.5 (SD=15.0) 17.3 (74.7%) 20 (62.5%) 5.1 (SD=10.8) 15.7 (87.3%) 29 (80.5%) 
Brake 4 8.5 (SD=14.5) 18.3 (76.4%) 21 (65.6%) 3.7 (SD=9.7) 17.1 (90.2%) 31 (86.1%) 
Overall 9.7 (SD=15.3) 17.0 (74.0%) - 4.8 (SD=10.6) 16.0 (87.7%) - 

Sensor 
2 

Brake 1 10.6 (SD=16.1 16.1 (77.9%) 21 (65.5%) 5.8 (SD=11.3) 15.1 (85.5%) 26 (72.2%) 
Brake 2 9.6 (SD=15.7) 17.1 (79.7%) 22 (68.8%) 4.8 (SD=10.3) 16.1 (87.9%) 28 (77.7%) 
Brake 3 9.2 (SD=15.1) 17.6 (80.9%) 22 (68.8%) 5.1 (SD=10.8) 15.7 (87.3%) 29 (80.5%) 
Brake 4 8.2 (SD=14.6) 18.6 (82.6%) 23 (71.9%) 3.7 (SD=9.7) 17.1 (90.2%) 31 (86.1%) 
Overall 9.4 (SD=15.4) 17.3 (80.3%) - 4.8 (SD=10.6) 16.0 (87.7%) - 

Sensor 
3 

Brake 1 10.6 (SD=16.1 16.1 (77.9%) 21 (65.5%) 5.8 (SD=11.3) 15.1 (85.5%) 26 (72.2%) 
Brake 2 9.6 (SD=15.7) 17.1 (79.7%) 22 (68.8%) 4.8 (SD=10.3) 16.1 (87.9%) 28 (77.7%) 
Brake 3 9.2 (SD=15.1) 17.6 (80.9%) 22 (68.8%) 5.1 (SD=10.8) 15.7 (87.3%) 29 (80.5%) 
Brake 4 8.2 (SD=14.6) 18.6 (82.6%) 23 (71.9%) 3.7 (SD=9.7) 17.1 (90.2%) 31 (86.1%) 
Overall 9.4 (SD=15.4) 17.3 (80.3%) - 4.8 (SD=10.6) 16.0 (87.7%) - 

 

Summary of most and the least effective system 
In Table 8, the mean reduction of the least effective system (Sensor 1, Brake 1) and the most effective System 
(Sensor 3, Brake 4) including avoided accidents as accidents with 0 km/h collision speed is shown. The results 
show a similar reduction of the collision speed for Sensor 1 and Brake 1 for all three databases. In the GIDAS 
sample, the speed was reduced by 17.1 km/h (57.7%) compared to 17.8 km/h (45.5%) in the CEDATU cases and 
15.4 km/h (79%) in the V_PAD cases. With the most effective system (Sensor 3, Brake 4), a higher reduction of 
the collision speed was observed compared to the least effective System. In CEDATU, a reduction of 28 km/h 
(67.1%) was observed and in V_PAD, 17.8 km/h (86.6%). 
 

Table 8. 
Mean reduction of the collision speed through treatment simulations including avoided accidents as accidents 

with 0 km/h 

 Sensor 1, Brake 1 Sensor 3, Brake 4 

Database 
Mean reduction _  

[km/h] 

Mean rel. reduction _ _  
[%] 

Mean reduction _  
[km/h] 

Mean rel. reduction _ _  
[%] 

CEDATU 17.8 45.5% 28 67.1% 
GIDAS 17.1 57.7% - - 
V_PAD 15.4 79.0% 17.8 86.6% 

 
 

DISCUSSION 

Effect of different data sources 
Accident scenarios in different countries can highly differ [26] for various reasons (e.g. different speed limits, 
country specific regulations, etc.). Thus, it is valuable to include different regions for such kind of investigation. 
For the present study, three databases were available.  
The three different data samples differed in terms of the collision velocities of the accidents. The mean speed in 
the CEDATU sample was highest with 47.2 km/h, followed by GIDAS with 30.7 km/h and V_PAD with 
23.6 km/h. The greater severity of the CEDATU accidents is also obvious from the analysis of the injury 
severities: In the CEDATU sample, 50% of the pedestrians suffered an injury of severity greater than AIS 4 +. In 
the GIDAS sample only 7% and the V_PAD sample only 3% of the pedestrians sustained AIS 4+ injuries. 
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Even if the relative speed reduction is similar in simulations based on the three different data sources, the mean 
speeds for remaining crashes is lower in V_PAD. The V_PAD sample is based on insurance claim reports, and is 
thus including a wide range of crash situations. Compared to VRU cases in the police reported sample in 
STRADA, only 50% of crashes reported to the insurance company were covered by police reports [27]. This is a 
probable reason why the mean collision speed in this data sample is lower than in the other two data samples. 
Also, the baseline sample from V_PAD only included SCP crashes that are associated with lower collision 
speeds than e.g. situations in longitudinal traffic. CEDATU and GIDAS include more severe accident cases and 
therefore, results based on CEDATU and GIDAS are reflecting higher collision speeds. Differences in initial 
speed are caused by the original focus of CEDATU on accidents resulting in fatalities (cases before 2008) and 
different share of conflict situations between the CEDATU and GIDAS datasets.  
 
For all three data sources, information of crashes were collected retrospectively. The collision speeds and 
trajectories of the baseline simulations are calculated based on accident sketches. However, in GIDAS an 
accident team is investigating the accident on the spot whereby in CEDATU and V_PAD the data are 
investigated based on various kinds of reports. In order to compensate for uncertainties in the pre-crash data, 
robustness analysis of parameters should be performed (e.g. variation of pedestrian- and car speed). This is 
usually done for baselines from V_PAD, but was not performed in the current study. 
 
Although it was tried to perform analysis as similar as possible, the applied simulation tools were not 
harmonised. Those differences are discussed within the P.E.A.R.S. initiative [11], which is working on the 
definition of a harmonised assessment process for effectiveness evaluations. 
 
The results show a similar reduction of the collision speed for all three data sources with the least effective 
system (Sensor 1 and Brake 1). 
 

Speed range for passive safety measures 
To calculate the overall effectiveness, the avoided cases are assigned a collision speed of 0 km/h. Else the 
effectiveness evaluation would rate systems poorer as they are, because only severe cases remain. 
When defining requirements for the passive safety measures, though, it makes no sense to consider avoided 
cases. Therefore, those were excluded for the definition of requirements to future passive safety measures that is 
discussed in the following section. 
It is remarkable that even for the severe CEDATU sample the least effective P-AEB system (Sensor 1, Brake 1) 
is able to reduce the mean collision speed to less than 40 km/h, which is the impact speed in current passive 
safety systems. 63.4% of the unavoided cases would be covered by current pedestrian safety testing. In the 
V_PAD simulations with the least effective system, 87% of the simulated were below 40 km/h.  
The speed distribution (shaded area) and the cumulative speed distribution (lines) of the cases are shown in 
Figure 5. The baseline speeds include all cases, the treatment simulation only unavoided cases. The analysis 
show that if it is intended to cover the same ratio of accidents with passive safety measures as today (with 
vehicles without P-AEB system), the speed considered for the evaluation of passive safety measures can be 
reduced by at least 34%. With the impact speed at 40 km/h [ref procedure], it would be possible to address a 
larger proportion of accidents than today. Looking at the results based on the V_PAD sample (although 
considering only SCP situations) more than 90% of the remaining accidents had speeds below this.  
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Figure 5. Distribution of the cumulative collision speed for crashes in baseline and unavoided crashes in 
treatment condition (baseline cases in the treatment not considered) 

 

Effect of opening angle 
A similar effect of the sensor opening angle was noticed in treatment simulations of the V_PAD and CEDATU 
cases. Increasing the sensor angle did affect the results only marginally. Within CEDATU, a sensor opening 
angle of 120° additionally avoided one accident more (+2%) compared to 60° and 90°. For V_PAD, a sensor 
opening angle of 90° and 120° avoided 2 additional accidents (+2.9%) compared to 60°. 
 

Effect of braking characteristics 
A higher brake gradient (Brake 3 versus Brake 1) leads to two additional (+4%) avoided cases in CEDATU and 
four additional (+5.8%) in the V_PAD sample. Increasing the maximum realisable deceleration (Brake 1 vs 2 
and 3) has a greater effect on the CEDATU cases than on the V_PAD sample. 
The effect of the different braking systems depends to a great extent on the sample composition. In the CEDATU 
sample, 68% of the cases were on dry road, 69% in GIDAS and 33.8% in V_PAD. A comparison of Brake 2 and 
3 in V_PAD showed no differences in mean collision speed, while 5.6 km/h in CEDATU. 
 
For real sensors, proper classification and collision detection of moving objects such as pedestrians is a particular 
challenge. With the ideal generic sensors, in the performed simulations, the pedestrian was classified only when 
it was 100% in the sensor field of view. Collision detection was based on deriving a relative speed vector 
between the car and the pedestrian and exact detected positions, while real sensor output is noisy and contains 
measurement error. The algorithm of the real safety system therefore operates under the assumption that the data 
is noisy, which leads to different implementations than with an ideal sensor. Furthermore, environmental 
influences (rain, fog) also negatively affect the visibility of objects, which has not been accounted for in the ideal 
sensor. Overall, the effects from ideal P-AEB systems that were evaluated in this study can differ from real P-
AEB systems. 
  

CONCLUSIONS 

Virtual precrash simulations of different ideal and conceptual P-AEB systems using real-world pedestrian cases 
from three different accident databases as baseline, showed that the lower the mean baseline collision speed in 
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the data sample, the more accidents were avoided. The maximum deceleration was the most influential P_AEB 
system parameter on the share of avoided cases and on the collision speed of the remaining cases. With the best 
system and the least severe data sample, 20% of the accidents/crashes still remained. A drastic reduction of 
collision speed (min 34%) was observed in all three data samples and this even with the most conservative P-
AEB system parameters. This clearly highlights the need for a combined vehicle safety assessment instead of a 
separate evaluation of active and passive pedestrian safety measures. 
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APPENDIX 

Table 9. 
Calculated Build - Up Times 

Build-up times Brake gradient 
Realized Deceleration 24.5 m/s³ 35 m/s³ 
0.5*g = 4.91 m/s² 0.2 s 0.14 s 
0.8*g = 7.85 m/s² 0.32 s 0.22 s 
1.1*g = 10.79 m/s² 0.44 s 0.31 s 
 

 
Figure 6: Definition of conflict situations according to Lindman et al. [17] 
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ABSTRACT 

 

Analyzing road-test data is important for developing automated vehicles. L3Pilot is a European pilot project on 

level 3 automation, including 34 partners among manufacturers, suppliers and research institutions. Targeting 

around 100 cars and 1000 test subjects, the project will generate large amounts of data. We present a data format, 

allowing efficient data collection, handling and analysis by multiple organizations.  

A project of the scope of L3Pilot involves various challenges. Data come from a multitude of heterogeneous 

sources and are processed by a variety of tools. Recorded data span all data types generated in various vehicular 

sensors/systems and are enriched with external data sources. Videos supplement time-series data as external files. 

Derived measures and performance indicators – required to answer research questions about effectiveness of 

automated driving – are processed by analysis partners and included for each test session.  

As a file format, we chose HDF5, which offers a data model and software libraries for storing and managing data. 

HDF5 is designed for flexible and efficient I/O and for high volume and complex data. The usage of different 

computing environments for specific tasks is facilitated by the portability that comes with the format. Portability 

is also important for exploiting the rising potential within artificial intelligence (e.g. automatic scene detection 

and video annotation).  

Based on lessons learned from past field tests, we defined a general frame for the common data format that is 

aligned with the data processing steps of FESTA “V” evaluation methodology. The definitions include 

representation of the source signals and a hierarchical structure for including multiple datasets that are gradually 

supplemented (post-processed or annotated) during the various analysis steps. By using the HDF5 format, analysis 

partners have the freedom to exploit their familiar tools: MATLAB, Java, Python, R, etc. First comparisons 

between time-series data in previous projects (e.g. AdaptIVe) and the proposed data format show a reduction in 

storage size of around 80 %, without losses in performance. Much of that is due to efficient internal compression 

and structuring of data. Considering the amount of objective data involved in automated driving, this leads to a 

great benefit, in terms of usability. 

This paper presents a compact, portable, and extensible format aimed at handling extremely large amounts of field 

test data collected in automated driving pilots. As a harmonized format between tens of organizations performing 

tests in the L3Pilot project, the proposed format has the potential to promote data sharing as well as development 

of common tools and gain popularity for use in other projects. The format is designed to allow efficient storing of 

data and its iterative processing with analysis and evaluation tools. The format also considers the requirements of 

AI tools supporting neural network training and use. 
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INTRODUCTION 

 

Automated Driving (AD) technology has matured to a level motivating large-scale road tests which can answer 

key open questions before market introduction. These newly-attained levels of maturity will ensure an appropriate 

assessment of the impact of AD. Of interest is what is happening both inside and outside of the vehicles. Also 

ensuring vehicle safety is of utmost importance as well as evaluating societal impacts. As a further point, the 

evaluation of emerging business models is of interest. 

A point that has proven to be the crux in many previous projects is the data exchange between partners, as well as 

the evaluation. This led to devising a data format common to the whole project, thereby easing the exchange of 

data and the further development of evaluation processes and tools based on the data. 

First, we will present the organization of data in previous projects and present the current project, L3Pilot [1]. 

After that, we will show how the process for deriving the requirements for the data format came together, followed 

by a few formats shortlisted for storage of the data. We will then describe the format itself and afterwards discuss 

it and its limitations. 

 

PREVIOUS PROJECTS AND EFFORTS 

 

Over the years, numerous projects have paved the way for advanced driver assistance systems (ADAS) and AD. 

Each of those projects had a slightly different approach to data acquisition, handling and evaluation. This section 

shortly picks out a few of these projects and gives some details on the used methods. 

In 2008, a big European project was started with euroFOT [2]. It identified and coordinated an in-the-field testing 

of new intelligent vehicle systems with the potential for improving the quality of European road traffic. During 

the project, the effectiveness of various lateral and longitudinal control functions and active safety functions on 

public roads was assessed. Data collection and analysis was organized from test sites. Each test site was using 

similar (Matlab based), but still with differences, data formats and individual analysis tools [3]. 

With AdaptIVe [4] in 2014, the focus moved from ADAS to AD. In the three and a half years of the project, AD 

functions for scenarios such as parking and motorway driving were developed and demonstrated. Raw data for 

the evaluation was delivered by the vehicle owners. At the evaluation partner, the needed signals (cf. [5], Annex 

3) were extracted and converted to an internal evaluation format, a mixture of CSV and MATLAB. 

From past EU Field Operational Test (FOT) projects, at least TeleFOT [6] and DRIVE C2X [7] used fixed formats 

when gathering data from several test sites to a central data storage. These projects assessed, in respective order, 

in-vehicle navigation systems and short-range vehicle communication prototypes. 

In 2017, the L3Pilot project was kicked off. L3Pilot will test automated driving functions (ADFs) in 100 cars with 

1,000 test subjects across 10 different countries in Europe. The tested functions will be mainly of SAE automation 

level 3, some of them of level 4 [8]. Together, European automotive industry, suppliers and researchers will pave 

the way for large-scale field operational tests on public roads creating a harmonized Europe-wide testing 

environment. The overall objective of L3Pilot is to test and study the viability of AD as a safe and efficient means 

of transportation, explore and promote new service concepts to provide inclusive mobility.  

 

SIGNAL DERIVATION / METHOD / REQUIREMENTS 

 

L3Pilot follows the FESTA V-process methodology [9] of setting up and implementing tests with the four main 

pillars and adapting the methodology to suit L3Pilot needs (cf. Figure 1). The four pillars in L3Pilot are: Prepare, 

Drive, Evaluate and address legal and cyber-security aspects.  

This paper focuses on the Prepare pillar with additional focus on the early phase of the Evaluate pillar. The Drive 

pillar is handled by the vehicle owners. As can be seen in the figure, the first step in L3Pilot is the definition of 

automation functions and use cases, with a major attention on motorways. In a further step, the research questions 

for this project are derived from the specified use cases. Accompanying the research questions are various 

hypotheses that this project will investigate. In order to do this, different data are needed. One part will be 

subjective data, i.e. data that originate from questionnaires and user evaluation. Particularly interesting from a 

data processing point of view, and therefore for a data format, are the data recorded in the vehicles. To specify 

what data to record, performance indicators and derived measures are defined, which are used to answer the 

research questions and confirm the hypotheses. Derived measures, in this context, are quantities that are directly 

calculated from source signal time-series data. These can be vehicular signals or information about the 

environment delivered by car sensors. Performance indicators, on the other hand, are no longer time-series data. 

They take different forms depending on the indicators. They can be single values giving a certain value or the 

average in a recording or in a specific scenario. However, they can also be histograms over some value in multiple 

occurrences of a driving scenario. The set of signals needed for the calculation of these measures results in a list 

of required signals, that are to be recorded during each session in the pilot vehicles. The full process following the 

FESTA-V up to the data can be found in [10]. 
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Figure 1. The FESTA implementation Plan adapted to L3Pilot 

 

With the needed signals defined, the focus shifts towards the actual data. As stated before, different data are 

aggregated during the project. The three main sources are subjective data, objective data and video feeds. The 

data important for the L3Pilot Common Data Format (CDF) are the objective data. These include original vehicle 

signals and derived measures calculated from the source signals. In a project of the size of L3Pilot, there is not 

one platform running all the pilot vehicles and systems. One can think of platforms such as ADTF [11] or ROS 

[12] to just name two. Therefore, a simple export of the data collected in the car is not a viable option, since the 

export files of the different platforms are seldom compatible.  

After the successful conversion, the Evaluate pillar starts with the data processing at the evaluation partner. 

Complementing the vehicle data will be data that originate from other, external, sources such as weather or map 

providers. Another factor is that multiple partners will be doing different analysis on the data, using different 

tools. One of the main programs used for post-processing and data analysis by the partners in this field is 

MATLAB. Additionally, in the previous years, Machine Learning has proven to be an important factor for the 

automatic detection of scenarios and video annotation. Therefore, a support of Python by the data format is of 

utmost importance. Considering statistical analysis of factors, some partners will also rely on R, SPSS or others. 

This leads to a requirement for a wide support of tools, platforms and programming languages.  

Considering the aim of 1000 drivers in 100 cars, the amount of data recorded and transferred between vehicle 

owners and evaluation partners in terms of actual file sizes is another factor that should not be neglected. This 

leads to another criterion, the portability of files and results. For portability, memory efficiency is of course 

important. 

Considering all these requirements, the common data format task force decided that a single file-based data format 

should be used in L3Pilot, to support an easy exchange of data between different partners. In order to reduce the 

amount of data that is transferred, compression was noted as another key feature to improve the process. 

Within the L3Pilot project, it is agreed upon, that vehicle owners convert their datasets into the presented CDF. 

This enables the evaluation partners to use common tools to analyze the data, no matter which vehicle owner they 

work with. 

 

CONSIDERED FILE FORMATS 

 

As stated in the previous section, the decision upon a file-based format was taken quite early in the project. 

Therefore, going forward in the decision process, only file-based formats were considered. Solutions for big data 

storage were not further considered, although they can play an important role in the data management within an 

institution. As a first step towards the CDF, various file formats were evaluated and discussed. In various previous 

projects, that are partially listed in the section above, many different file formats were used. All of them have their 

own advantages and disadvantages. These differ strongly depending on the intended use of the formats. During 

the decision process for the CDF, many of them were evaluated and the pros and cons were compared. The 
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following formats were the ones taken into closer account during the decision process, as the task force already 

had experience with them, or they were deemed as promising. 

A format that is commonly used among researchers in this field is the MATLAB file format [13]. The newest 

iteration is v7.3 that was introduced with MATLAB R2006b, however, the default version for files is v7. In it, 

data is stored in a binary format. It is a proprietary format, that is supported by MATLAB across all platforms that 

MATLAB supports. All datatypes included in MATLAB are supported and can be loaded and saved, while also 

supporting compression of data. One limitation is its strong link to MATLAB, however, for many research projects 

this was not an issue, since MATLAB is commonly used. This offers the opportunity to re-use existing tools from 

other or previous projects. The MATLAB file format was used in euroFOT [3] and internally during the evaluation 

in AdaptIVe [5].  

A commonly used file format for exchange of numerical data is Comma-Separated Values (CSV). In it, values 

are simply stored as text, separated by commas (or any other type of delimiter), thus the name. Time-series are 

represented by new lines for each element. It is easy to use, doesn’t need any updates and can be read and written 

by almost any program. However, there are also drawbacks to this format. CSV doesn’t support the use of 

metadata. Therefore, value formats and e.g. minimum and maximum values of a column must be defined in a 

separate supporting document. One of the main advantages of CSV, the textual basis, is also one of its 

disadvantages, because it doesn’t directly provide any compression and therefore takes up a lot of memory for 

long recordings. CSV was partially used for data transfers during the AdaptIVe project. 

The Hierarchical Data Format (HDF) [14] exists in different versions. The current version is HDF5 revision 1.10.4 

(as of January 2019). HDF was developed with portability in mind. It is supported by various languages such as 

C/C++, Fortran, Java, MATLAB and Python. Due to its support by a wide selection of programming languages, 

it can be used in the various available operating systems. It can therefore be easily implemented into different 

scripts and programs. HDF supports the storing of a wide array of datatypes including doubles, integers and 

strings. Additional datatypes can easily be added. To support portability, HDF has features for data compression. 

Different compression algorithms can be applied in order to save storage space. Metadata is stored in attributes in 

HDF files. This supports portability and simplifies the management of many files. Starting from version 7.3, the 

MATLAB file standard is based upon HDF5, thereby becoming compatible with HDF5 tools. As a disadvantage, 

for readability, HDF5 uses a binary format. An easy peek into the data without using the access libraries is 

therefore not possible. However, several data viewers exist. Editing the data can be another issue, depending on 

the viewers’ capabilities. Another disadvantage is, that there is one inner core module on which almost all 

implementations of HDF5 rely upon. An error in this module would be devastating. 

During L3Pilot, the main drawback of HDF5 was the somewhat limited documentation of programming examples. 

Another shortcoming and even a related bug were later found in Java libraries, as the main data viewer provided 

by HDF Group, HDFView, could not, at that time, display an array of compound datatypes used in the L3Pilot 

CDF. This was fixed by the HDF Group upon a report by the team.  

 

L3PILOT COMMON DATA FORMAT 

 

Considering the previously stated requirements, a file format was selected. The selection came upon HDF5. This 

allows us to define different datasets for the needed signals.  

Since HDF5 supports a wide array of programming languages, the vehicle owners can use their preferred language 

and platform to convert their data recorded in their proprietary format. On the evaluation side, the corresponding 

partner should be able to use existing or preferred tools with small modifications. This allows for an efficient use 

of resources, as more time can be committed to developing and implementing new features.  

HDF5 offers two ways of organizing data: datasets and groups [15]. Groups can contain zero or more HDF5 

objects and can be accessed together using the group name. They can be hierarchically organized and have circular 

references. Datasets are where the data is stored. They are a collection of data elements, or raw data, and metadata 

that stores a description of the data elements, data layout, and all other information necessary to read, write and 

interpret the stored data. These data values can be of various datatypes. Already defined are datatypes such as 

double, integer, etc. However, the library also offers the opportunity to define new datatypes, if needed. Included 

in the datasets as well are the metadata, which include attributes. These attributes can be used to describe the 

contained data, thus allowing a verbal description of the data and, e.g., providing the unit of a logged signal. These 

attributes are independent and can be read and written without loading the complete HDF file. Datasets can be on 

the root level or belong to one or more groups. One advantage of datasets and groups is that each of them can be 

loaded individually without loading the complete file. 

Derived through various iterations from the use cases and research questions, various logged signals are available 

on vehicle owner side. In order to allow for an efficient and quick access to the data, the signals are coarsely 

grouped according to their origin. For this purpose, datasets and groups are used by the CDF. All vehicle signals 

are organized in datasets on the top level of the file (“/”) (cf. Table 1). The “egoVehicle” dataset contains all 

signals originating directly from the ego vehicle itself. This would be signals such as the ABS status or the speed 
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of the vehicle. All information about the lane markings, e.g. the distance to the lane markings and their type, is 

contained in the “laneLines” dataset. Dynamic objects and their properties such as speed and distance are saved 

in the “objects” dataset. Information from a global navigation satellite system (GNSS), e.g. GPS or Galileo, is 

stored in the “positioning” dataset. The previously discussed derived measures and performance indicators are 

calculated at the evaluation partners, and then stored in the “derivedMeasures” and “performanceIndicators” 

datasets. 

In order to gain more information about the recorded trips, external data can be useful. Two important external 

data sources that were identified for the L3Pilot project are weather and map information. Weather information 

can be provided by various weather services and contains information about temperature, precipitation and cloud 

coverage. Map data provides information about the number of lanes, speed limits or intersections. These data are 

saved in the datasets “map” and “weather”. These are located hierarchically under the “/externalData” group. 

Some data cannot, or only with major difficulties, be derived from vehicle signals. One of these signals is, for 

example the secondary task performed by the driver during different situations. These kinds of signals are added 

by annotations through human experts, or students supervised by experts, watching the time-synced video feed of 

the recording. These annotations are normally added at the evaluation partner and not supplied by the vehicle 

owner. Annotations are located hierarchically under the “/annotations” group. For each annotation a subgroup is 

added with the name of the annotation. In this example it is “/sceondaryTask”. It includes two datasets 

“comments” and “enum”. In “comments” all comments that are additionally made by the annotator are stored, i.e. 

if there is an extraordinary reason for this annotation. The dataset “enum” contains the annotation as numerical 

value so that it can easily be reused in subsequent scripts and calculations. For the example of the secondary task, 

this would contain the annotated secondary task masked as an enum and the file time referencing it to the 

recording. Groups are used here, in order to have the possibility to flexibly extend the annotations. 

 

Table 1. 

All datasets according to the L3Pilot Common Data Format and the associated groups. 

Group Dataset Description 

/ egoVehicle Signals directly concerning the ego vehicle 

 laneLines Information on the lane markings 

 objects A list of (dynamic) objects 

 positioning Information from the positioning system (local or 

GNSS) 

 derivedMeasures Contains all the derived measures 

 performanceIndicators Contains all the performance indicators 

/externalData weather Contains information about the weather 

 map Contains map information 

/annotation - Group containing various annotations 

/annotation/secondaryTask comments Comments on the annotation by the annotator 

 enum The annotation values 

 

Considering the memory usage and a memory efficient storage of the recorded data, the datatypes of all signals 

are carefully selected. For this purpose, the desired and expected precision of all signals is reviewed. Many signals 

such as vehicle speeds or accelerations come in high precisions, with many digits to the right of the decimal point. 

For these signals, the “double” datatype is used, which allows for a high precision. Other signals such as the ID 

of an object, the speed limit or the number of lanes are not needed with high precision. Therefore, these values 

are saved as integers. Another common signal in recorded data is the status of a system. In general, it takes very 

few distinct values that are known beforehand. These status signals are saved as “enums” in the CDF. HDF5 

allows the definition of arbitrary enums. For the CDF, they are based upon “uint8” and take few distinct values. 

Table 2 summarizes the commonly used datatypes. 

 

Table 2. 

Different used datatypes in the Common Data Format, their sizes and examples 

Datatype Size in byte Exemplary value Exemplary N/A value 

Double 8 3.14159265359… NaN 

int64 8 1545572564000 -1 

int32 4 42 -1 

enum (uint8) 1 ON (1) N/A (-1) 
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In a project of the size of L3Pilot and with the wide variety of vehicle owners and sensor setups, not all the signals 

will always be available or will fit the same format. For the CDF this means, that some signals will not be available 

in some recordings. For missing values, “N/A” values are defined, i.e. values that are used when the signal is not 

provided. This makes it easier for programs and scripts to run on the data anyway. For floating point numbers, 

“not a numer” (NaN) [16] is used. Since NaN is not defined for integer types, values that are not expected to 

appear are used here, e.g. “-1”. 

All signals in the CDF are synchronized between the datasets. In order to achieve this, a frequency of 10 Hz was 

selected for the project. For reference, each dataset contains two different time signals. The first is the “FileTime” 

which simply counts up in discrete 10 Hz steps from the beginning of the recording. This can be used for easy 

reference in the file itself. The second time signal is the “posix” time in milliseconds, named “UTCTime” in the 

file. This allows references to external data sources such as weather or traffic services. The posix time is the time 

in seconds, milliseconds or nanoseconds (depending on the application) since 00:00:00 on 1 January 1970 in UTC. 

It doesn’t include any leap seconds and therefore differs from the atomic time used in GNSS systems by currently 

37 seconds (as of January 2019) [17]. 

Since not all signals are always recorded with the requested frequency of 10 Hz, interpolation methods are defined 

per signal. For continuously available signals, a simple linear interpolation is defined for most cases. However, 

since a linear interpolation is not applicable for status signals with few distinct values, a zero-order-hold (ZOH) 

interpolation is defined for these signals. Thereby each signal is held for one sample interval and then changes. In 

addition, a maximum time of loss is defined per signal. This is to prevent unreasonable behavior in signals when 

data loss was too long. For high precision variables this might be very close to zero seconds, for other signals (e.g. 

GNSS) this could be up to 10 seconds.  

Another step towards memory efficient storage is the utilization of the HDF5 built-in compression. One common 

algorithm here is the “DEFLATE” compression [18]. This algorithm is not restricted by patents. Many different 

implementations for almost all common programing languages are available. The algorithm works especially well 

on data that does not change often. In that case, it will only save the value for the first occurrence and save the 

next value only if it changes. This saves a lot of memory especially for Boolean values and other mostly static 

variables.  

In order to support faster I/O and memory efficient computing, HDF has a feature called chunking. Here, data is 

not saved in one continuous block in the file, but in so called chunks. These chunks are specified when creating 

the file according to the data that is to be stored. When reading the file, only one chunk at a time is loaded into 

the memory. This is especially useful, when handling large amounts of data. For the implementations in the 

L3Pilot project, the chunk size is selected in a way to get chunks of about 1 MB. Chunks are applied to the 

respective datasets. Since the size of a single timestep is known due to the mandated format and signals, the chunk 

size can be set accordingly.  

 

DISCUSSION 

 

For a preliminary assessment, memory consumption was measured for data coming from 32 hours of motorway 

data recorded in a previous project. The mean duration of one trip from this project is roughly 52 minutes. For 

that purpose, the raw data size was calculated from the known sizes of the datatypes and the length of the 

recordings. This is given in Table 3 as “Raw data, calculated” and taken as the reference for all other file sizes. 

This would lead to an average data file size of 84.54 MB for a recording length of 52 minutes. Using HDF5 for 

storing the data and activating the compression. the average reduction in file size is around 89 %. This results in 

an average file size of 9.63 MB. In terms of absolute memory, we can now save the recordings with only around 

395 MB instead of the ~3.5 GB that would have been needed without the compression. 

  

Table 3. 

Comparison of file sizes for a selection of different file formats. 

Format Mean file size Relative 

Raw data, calculated 84.54 MB 100 % 

HDF5, compression, DEFLATE 9.63 MB 11.17 % 

csv 54.91 MB 64.94 % 

mat file, v7 8.86 MB 10.48 % 

mat file, v7.3 9.29 MB 10.98 % 

 

For benchmarking, a few comparisons to other formats are done. The first one is CSV. All data that is written to 

the HDF5 files is taken and written to a csv file using the MATLAB function dlmwrite. This simply writes a 

matrix to a csv file. This results in an average file size of 54.91 MB. Compared to the raw calculated data size, 

this is only ~65 %, which can be explained by the fact, that data is written as ASCII characters, which only uses 
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one byte per character. Even though some numbers take up multiple characters, the overall number is still smaller 

than having double datatypes with eight bytes.  

As another comparison, the MATALB mat file format is considered. Here the commonly used version 7 is 

compared as well as the newer version 7.3 which is however not enabled by default. v7.3 is built upon HDF5 and 

can therefore also be read using HDF5 tools. As can be seen from the table, v7 offers the best compression in the 

sense of the smallest average file size. With v7.3, the file size slightly increases which MATLAB also notes in its 

documentation, which can happen due to overhead in the description of the file contents. 

Overall it can be seen, that the proposed format offers a good performance in terms of memory. It does not quite 

reach the memory efficiency of the long-matured MATLAB mat file format; however, it is not dependent on a 

proprietary program and can be accessed using multiple languages and programs.  

The binary nature of the format, which is one of its advantages, because it allows compression, is also one of its 

disadvantages. The binary format leads to the restriction that the data can only be accessed using the appropriate 

tools and programming APIs. This also hides the structure of the data from peeks and from an easy overview of 

contained signals without using additional tools. This is however not seen as a drawback in the L3Pilot project, 

since the structure of the data is known beforehand by all partners. 

 

 

CONCLUSIONS 

 

In this paper we present the CDF approach we decided to implement to manage the heterogeneous data sources 

in the L3Pilot project. The intention of the format is to make the process of data exchange and evaluation more 

flexible and efficient. The paper showed the methodology used to define the signals needed for the evaluation in 

the project and presented the considerations that went into the decisions on the file format. 

A preliminary test showed that the L3Pilot CDF using HDF5 is more efficient than some previously used formats, 

such as csv. On the other hand, it performs almost as well in terms of memory efficiency as the MATLAB 

proprietary format, while being independent of the software used. The portability is already by now exemplified 

by various tools built using the format but in different environments: Windows or Linux, and using Python, R or 

Matlab.  

In the next months, the format will be extensively used and tested in the piloting phase of the L3Pilot project and 

will constantly evolve and mature, leading to a proven format that could be applied to many other projects of 

similar scale and type. Various analysis tools will be developed and adapted to support the format. 
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